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In this paper we describe an optimization procedure applied to step{graded semi-

conductor structures in order to maximize intraband second{order susceptibility. It is

based on simultaneous solving of nonlinear equations by varying chosen structure pa-

rameters and thus extracting the remaining parameters so that the condition of double

resonance could be met. In the �rst case, all three states are bound. Then, we con-

sider a resonant state in continuum as the third state while the other two are bound.

This permits the use of a wider range of input photon energies. Numerical results,

obtained for AlxGa1�xN and AlxGa1�xAs quantum wells with pump photon energies of

~! = 240 meV are presented.

I Introduction

Double{resonant intraband second harmonic generation (SHG) has been studied in various asym-

metric quantum wells (QW's) in the recent few years. In such structures it is possible to tune the

potential shape and layer widths in order to achieve resonance conditions [1]. The second order non-

linear e�ects are maximal when consecutive energy states are equidistant, with the separation between

them equal to the input photon energy. The aim is to �nd the optimal structure parameters which

maximize the cyclic product of the three dipole matrix elements since it determines the second order

susceptibility �(2). Evidently, this product is equal to zero for symmetric structures.

Most of the papers published so far describe resonant SHG for ~! = 116 meV [1] { [12] which

corresponds to CO2 laser input radiation. This refers to the case where all three states are bound and

have to be placed below the barrier top (we have considered only the lowest three states). It is obvious

that the conduction band o�set between semiconductors limits the depth of the well and the highest

photon energies that can be frequency{doubled. One way of overcoming this problem may be the

use of semiconductor heterojunction with larger band o�sets, such as aluminum nitride and gallium

nitride [13] { [15]. The other possibility is to consider bound{continuum transitions. States above the

barrier are double{degenerated and those close to resonance could be favourable as the third state.
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The dependence of �(2) on the triple product of the matrix elements changes in comparison to the

situation where all states are bound, but optimization procedure remains similar.

We have analysed AlxGa1�xN and AlxGa1�xAs step{graded quantum wells in the attainable range

of parameters. The input photon energy is set to ~! = 240 meV (corresponding to CO laser radiation).

The method is based on solving a system of nonlinear equations which contains the dimensions of QW

and state energies as parameters. The double{resonance condition is imposed by replacing energies in

this system with E0, E0+240 meV and E0+480 meV, where E0 represents the energy of the ground

state. The dipole matrix elements obtained by these calculations in case of three bound states are

quite large for given material and input photon energy. On the other hand, introduction of bound{

continuum resonance transitions gives us the possibility of accomplishing higher{energy SHG in QW's

based on conventional AlxGa1�xAs alloy.

II Theoretical considerations

We consider an n{doped QW structure based on direct band gap semiconductors, and take the

band gap throughout it to be large enough that interband transitions, caused by radiation present in

the structure, may be neglected. The polarization response of the structure to the pump �eld with

photon energy ~! is then mainly governed by intraband transitions between quantised conduction

band states Ei. Nonlinear polarization at twice the frequency of the pump �eld, acting as the source

of second harmonic �eld is described by the second{order susceptibility �(2). Under the conditions

stated above �(2) is signi�cant only for both the pump and harmonic polarized perpendicular to the

QW plane (z{axis), i.e. �(2) � �
(2)
zzz . It is given by the general expression (e.g. Ref. [1]):
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where Mij =< 	ijzj	j > are the transition dipole matrix elements, �Eij the transition energies

between states i and j, �ii denotes the electron sheet density in the state i, �ij the o�-diagonal

relaxation rates and Lz the length of the structure. In majority of feasible structures almost all

electrons normally reside on the lowest state (i.e. �ii � �00 for i > 0), and QW is tailored so that the

lowest three of its states (0,1 and 2) are spaced by approximately the pump photon energy. Eq. (1)

then grossly simpli�es to

�(2)zzz =
e3�00

Lz�0~

M01M12M20

(2~! ��E02 � i~�02)(~! ��E01 � i~�01)
(2)

The largest value occurs in exactly the double-resonance regime, ~! = �E01 = �E12 � �E, i.e. with

strictly equispaced states, amounting to

�(2)zzz =
e3�00

Lz�0

M01M12M20

(~�)2
(3)

where we take �01 = �02 = � (though this is not essential).

In case of having free states contributing to the process, these expressions have to be slightly

modi�ed in order to include the density of free states. The second order susceptibility of such quantum

system remains determined by Eq. (1). As we have said before, because of the denominators with

energy di�erences, this expression will simplify under resonance conditions, i.e. when some of the states

are spaced by about the "pump" photon energies, with just one term with these "properly spaced"

states remaining as important (resonantly enhanced). Taking that only the ground state is signi�cantly
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populated with electrons (which is justi�ed in realistic QW's), the second order susceptibility is then

found to be:

�(2)zzz =
e3
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(~�)2 + [(2�E)� (Ek � E0)]2
(4)

where (~�)2 is the linewidth (dephasing rate), being typically 5 meV in QW systems (and is here taken

to be common to all transitions). The summation is performed over all energies Ek belonging to the

continuum. Wave functions corresponding to the states above the barrier are normalized by taking

into consideration the box{boundary conditions. The previous expression should then be transformed

in the following way:
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where M̂ij represent matrix elements calculated with normalised bound state and non{normalised

contiuum state wave functions and �kB = �=Lz. When Lz ! +1, then �kB becomes dkB andP
!
R
. Specializing to the case we consider, that of two bound and one resonance state having about

proper spacings, the second order susceptibility acquires the form:
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where mB0 is the e�ective mass in the barrier at the conduction band edge. The matrix elements with

state 2 (belonging to continuum) are to be calculated twice, because of the double degeneracy (i.e.,

with both wave functions corresponding to energy E2 ). These two wave functions are taken in form of

scattering states (i.e., are orthogonal), which prevents under - or overcompleteness in summing over all

continuum states in (6). Clearly, with bound states wave functions localized in the well, one expects

that the wave functions close to the resonances will give the largest contributions in (6), because of the

largest matrix elements, provided the resonance conditions are also met. We may note that, due to

di�erent types of normalization of bound and free states wave functions, the triple product of matrix

elements in (6) is not (even in terms of physical dimensions) equivalent to the corresponding product

in case of all three bound states. To make the comparison between the two cases possible, the former

should be multiplied by (~�)2 (�̂(2) = (~�)2��).

In order to maximize �(2) one should clearly maximize the corresponding products of dipole matrix

elements �(2) = M01M12M20 in numerator of (3), by appropriate tailoring of QW pro�le (and hence

the wave functions) while preserving the levels spacing. In case of �(2), the presence of M20 rules out

symmetric QW's, because of the de�nite parity of wave functions, so one should consider asymmetric

structures only. To �nd the best potential shape, one should vary the potential U(z), and (related to

it in ternary alloys) e�ective mass m(z), subjected to the constraint that states spacing should be as

desired, i.e. only the wave functions and hence the matrix elements should be a�ected.

Quantised electron states in QW structure with position-dependent e�ective mass m(z) may be

found by solving the envelope function Schr�odinger equation of the form [16]

�
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�
+ U(z)	 = E	 (7)

where 	(z) is the envelope wave function, U(z) the potential and E the energy. E�ects of bulk dis-

persion nonparabolicity may be conveniently described by energy-dependent e�ective mass, according

to the two-band Kane model [17]

m(z; E) = m�(z)

"
1 +

E � U(z)

Eg(z)

#
(8)
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where Eg(z) is the material composition- (and hence the position-) dependent band gap, and m�(z)

denotes the parabolic (band edge) e�ective mass. These e�ects become increasingly important at

higher energies. They are technically signi�cant in QW's designed for SHG of CO2 laser radiation,

and even more so at higher energies.

Consider an asymmetric step QW with stepwise constant potential and e�ective mass (Fig. 1(a)),

which is frequently used in resonant SHG. Its optimization has been considered in Ref. [1]. The
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FIG. 1. The potential (conduction band edge) in single{step QW in case of (a) three bound states (b)

two bound and one resonant state. The structure design parameters, used in the main text, are all

denoted.

authors �rst assumed an idealized model with in�nite barriers and constant e�ective mass, with

nonparabolicity neglected, allowing for analytic solution. Having optimized the parameters of such a

QW, it was then modi�ed to take a �nite barrier height into account. A single composition of the

barrier material was assumed, regardless of the pump photon energy ~! that QW was designed for,

i.e. the barrier height was not considered as a parameter for optimization. Yet, data presented in Ref.

[1] for in�nite and �nite barrier QW's indicate that the matrix elements product �(2) in the latter

exceeds the value in the former by a factor which depends on ~! but is always very signi�cant, e.g.

�(2) may more then double due to �nite barriers. The e�ect is ascribed to the fact that �nite barriers

allow for wave function penetration inside them, and more extended wave functions lead to larger

matrix elements. With enhancement of �(2) as large as that (i.e. such di�erence between optimized

idealized QW, and modi�ed but nonoptimized realistic QW) one may wonder whether the barrier

height should be considered as free parameter, on equal grounds with others, and perform the full

optimization of this system. This is the problem we consider below, taking also the nonparabolicity

(neglected in Ref. [1]) into account.

Eqs. (7-8) should be solved, with observing the boundary conditions (continuity of 	(z) and

(1=m(z))d	=dz) at z = �cW , z = 0 and z = cS . With the conventional exponential or plane wave

type of solutions in separate layers of the structure (Fig. 1(a)) we get a system of six homogeneous

equations. Nontrivial solution of that system requires that
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in the energy range (0 < E < US), where mB, mW and mS are the energy-dependent nonparabolic

e�ective masses in the barrier, well and the step layers, respectively, and the corresponding wave

vectors are kB = [2mB(UB �E)=~2]1=2, kW = [2mWE=~
2]1=2, and kS = [2mS(US � E)=~2]1=2. In the

energy range above the step US < E < UB we de�ne k�S = ikS = [2mS(E � US)=~
2]1=2 and Eq. (9)

is modi�ed by substituting sinh(kScS) ! sin(k�ScS), cosh(kScS) ! cos(k�ScS), kS ! k�S , k
2
S ! �k�2S .

This de�nes the function �(E),its zeros being the energies of quantised states in asymmetric single
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step QW, with nonparabolicity included. The corresponding wave functions are then simply derived

from the boundary conditions and the normalization condition
R+1
�1

j	(z)j2dz = 1.

Having chosen the alloy system to work with it is reasonable to take the well layer to comprise pure

\well-type" semiconductor, because, with �(2) roughly scaling as e�ective mass to power 3/2 (Ref. [1])

there is no bene�t from allowing the well layer to be made of the alloy. Thus, mW is de�ned from the

start, and in the step and barrier layers, which are made of the alloy, with suitable compositions xS
and xB , the e�ective mass and potential are uniquely related to each other, i.e. mS;B = mS;B(xS;B)

and US;B = US;B(xS;B). Therefore, �(E) is a nonlinear function of four independent parameters, say

the widths cW and cS , and potentials US and UB. All possible QW shapes, i.e. the values of the four

parameters, which result in three states spaced by a speci�ed amount �E = ~!, may be obtained

from the system of three nonlinear equations

�(UB; US ; cW ; cS; E0) = 0

�(UB; US ; cW ; cS; E0 +�E) = 0 (10)

�(UB; US; cW ; cS ; E0+ 2�E) = 0

where E0, the ground state energy measured from the well bottom, is an additional free parameter.

Eq. (10) may then be solved for three parameters out of �ve, the remaining two being \input" param-

eters to be used for the QW shape variation, with values of all the �ve parameters subject either to

obvious physical constraints or to limitations imposed by the chosen alloy system (also the technolog-

ical feasibility of the structure may impose some additional constraints). By evaluation of the wave

function and the matrix elements (all that can be done analytically, though via rather cumbersome ex-

pressions) for each individual solution, it is quite straightforward to search the entire two-dimensional

free-parameters space and �nd the best of all step QW's, which maximizes �(2).

An analogous procedure may also be used to explore the possibility of designing QW's with two

bound states and a resonant state, belonging to the continuum,for the second harmonic generation.

The bound-continuum transitions have previously been considered in other contexts, e.g. for infrared

absorption and photodetectors [18, 19], but not for the harmonic generation.

We consider the class of QW's with the structure given in Fig.1(b). The state energies and the

corresponding wave functions can be found from the e�ective-mass Schr�odinger equation, which is valid

for the conduction band electrons, and may take account of nonparabolicity via the energy-dependent

e�ective mass Eq. (8), according to the two-band Kane model [17]. States above the barrier are

double degenerate, and most interesting are those close to resonances. Resonances correspond to local

maxima of transmission, which generally do not exactly equal unity in this asymmetric system (only at

quite high energies will the transmission become close to unity). Positions of transmission coe�cient

extrema coincide with extrema of the following function:

F (E) = A sin2(kW cW ) sin2(k�ScS) +B sin2(kW cW ) cos2(k�ScS)
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�
, k�B = [2mB(E�UB)=~2]1=2. The wave function amplitudes inside the well

are larger at resonance energies then o� them, but there is no big di�erence outside the well, due to

the normalization condition.

Within the class of single step asymmetric QW's, all possible shapes that provide resonance con-

ditions are accessed by solving the system of three nonlinear equations which demand that the two

bound and the resonance state are spaced by exactly �E = ~!:

�(UB; US ; cW ; cS; E0) = 0

�(UB; US; cW ; cS; E0+ �E) = 0 (12)

Eres(UB; US ; cW ; cS)� (E0 + 2�E) = 0
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where Eres is the �rst continuum resonance energy, corresponding with the �rst minimum of the

function F (UB; US ; cW ; cS; E) (Eq. (11)).

These equations contain the QW structure parameters, and also the ground state energy E0 , with

its value alone being irrelevant for the process we consider, so it is also taken as a parameter on equal

footing with layer widths (cW ,cS) and potentials (US ,UB). With a total of �ve parameters and three

equations (12), two of them are really free "QW design" input parameters, while the remaining three

can be determined by solving (12). Therefore, not only that a QW may be designed for a chosen

~! (within some limits), but there is even room for the QW shape optimization in order to give

maximal nonlinearity. The optimal QW shape may be found by de�ning a two dimensional parameter

space, to be searched by �rst solving (12) for the remaining parameters, and then (provided that the

solution is physically and technologically acceptable) calculating the matrix elements and the nonlinear

susceptibility corresponding to a particular solution.

Similarly, the described procedure may be employed for optimization of (also frequently encoun-

tered) coupled QW's in respect to �(2). QW's intended for other nonlinear processes which may not

require equispaced states (o�-resonant harmonic generation, parametric down-conversion etc.) can be

optimized in the same fashion, as well.

The described procedure is systematic in the sense that it allows the entire search of the free-

parameters space de�ning the QW pro�le within a given class (i.e. of the same general shape), and

does not include intuition or elements of luck in spotting the \best potential shape". On practical side,

it may be implemented with reasonable e�ort and computation time only for structure comprising not

more than a few layers of di�erent widths and compositions. Yet, exactly such simple structures are

of the largest technical importance at present.

III Numerical results

To illustrate this procedure we have performed the optimization of ternary AxB1�xC alloys based

QW's in respect to resonant intersubband nonlinearity. The step-type QW's are based on AlxGa1�xN

(which may be useful for higher energy SHG) in case of three bound states as displayed in Fig. 1(a),

and on the conventional AlxGa1�xAs alloy (with a third state in continuum), Fig. 1(b). In a single

step QW made of alloys of AC and BC compounds, i.e. with the structure

Ax1B1�x1C=BC=Ax2B1�x2C=Ax1B1�x1C, the e�ective mass in separate layers is given by

mB = [mACx1 +mBC(1� x1)]

�
1 +

E � UB

Eg B

�

mS = [mACx2 +mBC(1� x2)]

�
1 +

E � US

Eg S

�
(13)

mW = mAC

�
1 +

E

Eg W

�

as follows from Vegard's law and the way chosen to introduce nonparabolicity, with band gaps in the

step and barrier layers Eg B = Eg ACx1 + Eg BC(1 � x1) and Eg S = Eg ACx2 + Eg BC(1 � x2). The

step and barrier heights are US;B = x2;1�Ec, where �Ec is the conduction band o�set between AC

and BC compounds.

We �rst consider the wurtzite semiconductor AlxGa1�xN QW's, both compounds having direct

band gaps, and use the following parameters [13] { [15],[20]: mGaN = 0:18m0, mAlN = 0:27m0,

Eg GaN = 3:45 eV, Eg AlN = 6:28 eV. There is a dispersion of data on �Ec between GaN and AlN

in literature. We have used the value �Ec = 2 eV, based on recent photoemission spectroscopy

measurements [21, 22] and calculations [23] { [25] which all suggest the valence band o�set about

0:8 eV.

Choosing initially ~! = 240 meV (this corresponds to 5:1�m CO laser or approximately to fre-

quency doubled CO2 used as pump for the next SHG), we performed the step QW optimization, via
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FIG. 2. The product of matrix elements �(2) =M01M12M20 in AlxGa1�xN step QW from Fig. 1(a) as

it depends on the choice of the lower well width cW for various values of barrier height UB, calculated

under double resonance condition ~! = 240 meV.
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FIG. 3. The maximal values of �(2) in AlxGa1�xN single step QW at double resonance, ~! =

�E = 240 meV, achievable with various values of barrier height UB, together with other corresponding

structural parameters.

solving Eq. (10), by taking the width of the well cW and barrier height UB as free parameters. These

were varied in the range 15 �A� cW � 30 �A and 0:7 eV� cW � 1:4 eV, respectively. Other parameters

of the structure (cS; US ; E0) were coming out as the solution of Eq. (10). By calculating the product

of matrix elements �(2), relevant for SHG, we �nd that the best results are obtained if the �rst level

happens to be below the step (E0 < US) and the other two above it, as is indeed generally accepted

in the literature. Some results for this case are given in Fig. 2, which clearly shows the importance

of proper choice of the barrier height, along with other parameters, in designing the optimized QW.

Maximum values of �(2) achievable with speci�ed values of UB (dictated by technology-related con-

straints, for instance), together with values of optimally designed QW parameters, may be read from

Fig. 3. The largest value of �(2) achievable in this structure amounts to 247 �A3 with the QW pa-

rameters UB = 850 meV, US = 287 meV, cW = 17 �A, cS = 28 �A (energies of the three states are

E0 = 195 meV, E1 = 435 meV, and E3 = 675 meV).
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FIG. 4. Maximum achievable �(2) in AlxGa1�xN single step QW (Fig. 1(a)), together with the

structural parameters, given for a range of pump photon energies under double resonance conditions.

The procedure was then repeated for various values of pump photon energy in the range ~! =

100 � 300 meV. The fully optimized value �
(2)
MAX and the corresponding QW parameters, as they

depend on ~!, are presented on Fig. 4. One may note that �
(2)
MAX decreases with ~!, which is

in qualitative agreement with the fact that simple idealized structures, like constant mass linear

harmonic oscillator, have dipole matrix elements scaling as �E�1=2, hence one normally expects that

�
(2)
MAX � �E�3=2 [11].

The theory described in the previous section was also employed for the design and optimization

of QW's based on the AlxGa1�xAs alloy , to be used for resonant second harmonic generation of

~! = 240 meV radiation (corresponding to, say, CO laser). The material parameters are taken as

[16]: mGaAs = 0:067m0, mAlAs = 0:15m0, Eg GaAs = 1:42 eV, Eg AlAs = 2:67 eV (direct gap), and

�Ec = 750 meV. Due to comparatively large photon energies involved, this technologically favourable

alloy does not provide su�cient band o�set to enable QW's with three bound states spaced by this

o
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FIG. 5. The product of dipole matrix elements as it depends on the QW design parameters:(a) on the

well width cW and (b) on the barrier height UB (dashed line) and the step layer width cS (solid lines).
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amount, so one cannot take advantage of double resonance enhancement of nonlinear susceptibility in

this case. The di�culty may be circumvented, at least in principle, by allowing the highest of these

states to be a resonance.

The well layer width cW and barrier height UB were taken as the input parameters, and the others

came out as the solution of Eq. (12) . The cyclic product of matrix elements, as it depends on the

choice of the QW parameters, is given in the Fig. 5(a). To obtain as large nonlinearity as possible,

it is clearly advantageous to choose the highest technologically reasonable barrier height, and, upon

�xing this value, there is an optimal well width. In Fig. 5(b) the dependence of the matrix elements

product on UB and the step layer width cS is given. The largest value �
(2)
MAX = 38 �A3 is obtained in

QW with UB = 480 meV, US = 190 meV, cW = 27 �A, cS = 24:5 �A .

IV Conclusion

A systematic method for the optimization of ternary semiconductor alloys based QW's in respect

to nonlinear optical susceptibilities was discussed.

It is applicable to step{graded QW's, like asymmetric step QW, coupled QW and similar. It allows

the variation of a potential of speci�ed general shape throughout its free-parameters space, in such a

way to keep quantised states energies as required, while looking for maximal nonlinearity. We have

demonstrated it on the design of AlxGa1�xN and AlxGa1�xAs based QW's intended for resonant

SHG in case of all three bound states, and two bound plus one resonant state. The calculations for

AlGaN QW's have provided rather large dipole matrix elements products.

Even though the values of the dipole matrix elements products in semiconductor quantum wells

with two bound states and the resonant state in the continuum as the third are not very large, it is

important to know that it is possible to obtain resonantly enhanced nonlinear optical susceptibility,

corresponding to higher values of pump photon energies, in conventional technologically favourable

AlxGa1�xAs based QW's.
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