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The detailed description of simulated annealing algorithm is given. Four variations of

the original algorithm are presented and their performance was tested on two families of

multiminima test functions for up to 100 variables. The application of simulated anneal-

ing algorithm for determination of model parameters of optical constants of aluminum

is presented.

I Introduction

Simulated annealing (SA) algorithms represent a class of methods for solving combinatorial opti-

mization problems, based on the analogy to the physical process of annealing. Simulated annealing

algorithm was introduced by Kirkpatrick et al [1]. Since then, considerable number of papers on the

subject were published, dealing either with proof of convergence of the SA technique or proposing

the implementation of various modi�ed SA algorithm to solving certain real-world problems like chip

oorplaning, wiring, optimum design of electronic devices, neural networks learning process etc.

To understand the analogy of SA with physical process of annealing, let us consider how low

energy state of a solid can be achieved. The low energy state is usually highly ordered state such as

defect-free crystal lattice. To accomplish this, annealing of the solid is performed: it is heated to high

temperature permitting many atomic rearrangements and then slowly cooled until it is frozen into

a good crystal. If a function to be minimized, called objective or cost function, is analogous to the

energy of a solid, it is reasonable to expect that by simulating slow cooling from high temperatures

poor unordered solution transforms to desired, highly optimized solution.

Simulated annealing has its origins in the work of Metropolis et al [2], who introduced an algorithm

for e�cient simulation of a collection of atoms in equilibrium at given temperature. Starting from

an arbitrary initial state, the algorithm generates a sequence of changes of variable values termed

"moves". If the move results in the decrease of objective function, i.e. �E < 0 new state is accepted

as initial state for the next move. However, if �E > 0 there is still a non zero probability of accepting
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that move, which is a function of �E and the control parameter T termed temperature. Probabilistic

hill climbing capability of the SA algorithm enables escaping local minima. Let us illustrate the

importance of this feature on the simple example, as shown on Fig. 1. If a conventional downhill

FIG. 1. Illustration of the global optimization problem.

optimization method starts from initial state A, it will end up in local minimum C, failing to �nd

global minimum, which would be located from initial state B. In the case of SA, it does not have

necessarily to be so, owing to hill climbing capability of the algorithm. If the initial temperature is

high enough, uphill moves that enable evading of local minimum C could be accepted. By decreasing

the temperature after equilibrium is reached at each current temperature, probability of accepting an

uphill move is decreased.

Since its introduction in 1983, SA has di�used widely into many diverse applications, like integrated

circuits design, [1, 3, 4], solving traveling salesman problem [1, 5, 6, 7], conformal optimization of

macromolecules [8], model parameter estimation [9, 10, 11, 12, 13, 14, 15], restoration of images [16],

neural networks [17] etc. SA has several very attractive features, making it a successful tool for various

applications. As �rst, it is not "greedy" - in other words, it is not easily fooled by the quick payo�

achieved by falling into unfavourable minima. It wanders freely among local minima of depth less than

about T . As temperature T is reduced, the number of minima qualifying for frequent visits is gradually

decreased. As second, con�guration decisions are in logical order, i.e. changes which cause greatest

energy di�erences are possible only at the beginning of the process, when temperature has large values.

However, in a number of applications it is imperative to carefully adjust SA algorithm's features like

cooling schedule, equilibrium criterion, move-generation procedure etc., to obtain global minimum.

Convergence of the SA algorithm was investigated for di�erent cooling schedules and it was proved

that algorithm asymptotically converges to global minimum with probability one [16, 18, 19, 20, 21].

Unfortunately, there is no practical guarantee that any of the existing modi�cations of SA algorithm

can solve certain practical problems, so that some changes often have to be introduced in order to

improve performance of the algorithm and obtain satisfactory results.

In the following section essentials of SA algorithm are given, as well as brief descriptions of some

signi�cant variations in cooling schedule, acceptance probability and move generation procedure. In

section III comparison of performance of 4 variations of SA method is given for two families of mul-

timinima test functions, while in section IV application of the acceptance-probability-controlled SA

algorithm for determination of model parameters of optical constants of aluminum is demonstrated.

II Description of the algorithm

Simulated annealing is a procedure that iteratively changes a state of the optimization problem.

Flowchart of the algorithm is given on Figure 2. Moves are chosen using a state generation procedure.

The decision whether or not to actually make a move is made by acceptance criterion.
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FIG. 2. Flowchart of the SA algorithm.

The algorithm has two nested loops. In the inner one, Metropolis algorithm at �xed temperature

is performed until the equilibrium state is reached, while in the outer one update of the temperature

is executed. The algorithm is determined by: initial temperature setting procedure, equilibrium

condition (inner loop stopping criterion), termination criterion, acceptance criterion, move generation

procedure and cooling schedule. Details are given as follows.

II.1 Initial temperature

Initial temperature should be high enough to allow exploration of the whole objective function

domain. It is usually set to arbitrary value, considered high enough. However, this approach often leads

to larger computational time, due to unnecessarily spent time at too high temperatures. Therefore,

in algorithms investigated here, procedure of Rees and Ball [7] was employed. Making many random

changes to the objective function E, average objective function hEi1 and the average of the absolute

change hj�Eji1 is calculated, which correspond to in�nite temperature when all moves would be

accepted. The initial temperature, corresponding to initial acceptance probability AP (under the

hypothesis that AP is given by Boltzmann distribution) �init = 0:90 is given with

T init = �
hj�Eji1
ln(�init)

� 10hj�Eji1 (1)

II.2 Inner loop stoping criterion

In the plain SA, introduced by Kirkpatrick et al [1], inner loop was terminated if number of accepted

moves equaled ten times number of variables, or if number of moves equaled hundred times number of

variables. This criterion is still frequently used in a number of practical applications, although it is far

from optimal one. In other words, equilibrium is often reached after fewer moves, so that algorithm
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spends to much time at some temperatures. Wasting time and e�ort can be prevented if inner loop

stopping criterion is connected with the convergence of the entity D, as suggested in [6], given by

D =
1

n

nX
i=1

exp [(hEi �E(pacc

i
))=Tm] (2)

where sumation is performed over accepted states pacc

i
at the temperature Tm. hEi is the average

objective function at the preceding temperature Tm�1 given by

hEi =
1

Nacc

NaccX
i=1

E(pacc

i
) (3)

where Nacc is the number of accepted states at Tm�1, while E(pacc

i
) is the objective function cor-

responding to accepted states pacc

i
. Equilibrium is achieved when the absolute value between two

consecutive values of D is less than speci�ed number �, jDn � Dn�1j=Dn�1 < �. However, it should

be pointed out that there have been reported non-equilibrium SA algorithms, where temperature is

reduced even though equilibrium is not reached [5].

II.3 Termination criterion

Outer loop is commonly terminated if speci�ed number of iterations is reached, or if next temper-

ature is less than speci�ed �nal temperature T0. In this paper, algorithms employing slightly modi�ed

solidi�cation criterion of Doria et al [22] were investigated. At each temperature the lowest obtained

value of the objective function is recorded. When the absolute values of the relative di�erence be-

tween the current minimal objective function and three preceding ones were within � of each other,

the simulation was stopped.

II.4 Acceptance criterion

Probability of accepting an uphill move is usually given with Boltzmann distribution � = min

(1; exp(��E=T )), where �E is the change in the cost function, and T is temperature. Recently, a

number of di�erent acceptance criteria and corresponding cooling schedules have been proposed for

improving the performance of the SA algorithm. Several of them will be described here. Most proposed

AP slightly di�er in behavior from Boltzmann's, like AP with factor � i.e. � = min(1; exp(��E=�T ))
[27], where � is a constant that relates temperature to objective function value, or � = min(1; (1 +

exp(��E=T ))�1) [28]. But, there are also AP that are quite di�erent from Boltzmann's, like Glauber

AP [5], where AP for both uphill and downhill moves is given by

� =
exp(��E=kBT )

1 + exp(��E=kBT )
(4)

where kB is a given constant. It can be observed that at high temperatures all moves will be accepted

with probability 0.5. With decrease of the temperature, AP of downhill moves approaches 1, while AP

for uphill moves approaches 0. Recently, various AP have been proposed which are based on Tsallis

statistics, built from general entropy. For instance, in [12] was proposed generalized AP given by

�(sts) = min(1; (1� (1� qa)��
2=T (ts))

1=(1�qa)) (5)

where ��2 is the di�erence of the sum over squared deviations achieved with parameter set sts at time

ts. The parameter qa 2 [�10; 1) enables avoiding numerical instability. More complicated variant,

also originated from Tsallis statistics [8] is given with
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P = min

"
1;

�
1� (1� q(T ))�Enew

1� (1� q(T ))�Eold

�q(T )=(1�q(T ))#
(6)

and

lim
T!0

q(T ) = 1 (7)

where q(T ) is monotonically decreasing function of temperature. In [8] is also stated that form of AP

which is widely used in simulations of spin glasses systems is given with p = 1=2[1� tanh(��E=2],

which has the same behavior as previous expression. However, since di�erent AP does not solve certain

problems of SA algorithms, which are described in detail in the part discussing cooling schedule, in

algorithms investigated in this paper Boltzmann's AP was employed.

II.5 Move-generation procedure

The domain P containing the parameter vector p = (p(1); p(2); : : : ; p(N)) is determined by setting

the lower and upper boundaries for each parameter, pl(k) and pu(k). The e�ciency of the generator

of changes in con�guration depends largely on two elements: a) number of variables to be changed in

one move, and b) move-step adjustment.

As it was mentioned above, in the optimization problems with the large number of variables, moves

which require the change in all variables (here, parameters of the model) can cause the instabilities

in the solution. The number of variables to be changed in one move is often reduced, and sometimes

is chosen randomly [9, 24, 25], or even reduced to only one variable per move, as in the Ref. [23].

However, the random state-generation procedure is far from optimal. In this paper is demonstrated

that convergence of the algorithm is accelerated by taking into account the sensitivity of the objective

function with respect to the change of individual variables. The algorithm makes the probability

of taking the move along the certain coordinate direction proportional to the sensitivity of the cost

function with respect to that variable. This improves the mobility of the system which now shows

preference for the steeper slopes in either uphill or downhill direction. Therefore, this generator shows

strong bias towards the moves that cause the greatest energy di�erence. Let us describe in detail

adaptive move-generation procedure. At each temperature, for each parameter p(k), we determine

the average of the absolute change in cost function hj�Ejki by making a lots of random moves for

parameter p(k), keeping other parameters �xed. Then, for each k, k = 1; : : : ; N we compute the

frequency of change f(k) (corresponding to the parameter p(k)) using:

f(k) = 0:8
hj�Ejki

hj�Ejkimax

(8)

where hj�Ejkimax = max(hj�Ejki; k = 1; : : : ; N). If the frequency f(k) of changing the parameter

p(k) is greater than randomly generated number pch 2 [0; 1], parameter pi(k) is altered to pj(k),

pj(k) := pi(k) + r�(k); (9)

where r is an integer chosen randomly in the set (�1; 1), and �(k) is the step size for parameter pi(k).
If new state pj(k) is outside the speci�ed boundaries pl(k) and pu(k), pj(k) is assigned a value of the

nearest boundary.

The impact of the step size on the quality of the solution was frequently addressed. Corana et al.[23]

changed the components of the move-step vector adaptively in order to maintain the acceptance ratio

close to 0.5, at all temperatures. Most of the authors consider it important to decrease the move-step

during the annealing in order to reduce the uctuations in the �nal stage [6, 28, 26, 29]. The initial
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step size has to be comparatively large to provide the su�cient mobility of the algorithm to cover the

entire parameter space. Therefore, there is a direct connection between temperature scales and move

scales. At high temperatures most large moves and essentially all small moves are accepted. This

suggests a strategy for adapting the move set being used to the temperature scale. It can be done, as

suggested in [29] if selected move classes satisfy hj�Eji � T to within standard distribution of j�Ej
and hj�Eji< [hE(T )i2�hE2(T )i]1=2. However, this criterion haven't �nd many practical applications.
On the contrary, combination of Cauchy-Lorentz move distribution G(x) = T (t)=(T (t)2+ x2) coupled

with fast annealing schedule, as proposed recently in [28], have become widely applied. However, since

temperature usually depends on time, i.e. number of executed outer loops, move-step size can be in

a simple manner directly connected with time, as suggested by Catthoor et al [6]. Therefore, here

is adopted the suggestion of Catthoor et al. and reduced the step size in \nearly inverse quadratic"

manner. When the ratio �(k)=p(k) is less than 0.005 further reduction of move-step for that parameter

is stopped.

II.6 Cooling schedule

The plan for changing the temperature with time is termed cooling schedule. The standard,

exponential cooling schedule Tm = �Tm�1 is widely accepted [1, 3, 11, 12, 13, 22, 24, 30], where � has

�xed value between 0.9-0.98. Geman and Geman [16] proved that for high enough initial temperature

global minimum is obtained asymptotically, if cooling schedule is not faster than logarithmic one,

T (t) = T init= ln(1 + t). Logarithmic cooling schedule was compared to exponential and decrement

(T (m) = T (m � 1) � ) one, and employed in various applications [7, 32, 33]. Szu and Hartley

introduced "fast simulated annealing" [28], with cooling schedule

T (t) =
T (t� 1)

1 + t
(10)

This cooling schedule is usually applied together with Cauchy-Lorentz distribution in move generation

[27, 28]. For di�erent AP described above, corresponding cooling schedules have been devised. For

instance, to Glauber AP corresponds the following cooling schedule [5]

Tnew =
Told

1 +
Told(1+�)

3�

(11)

where � controls cooling rate, while � is standard deviation of all con�gurations at current temperature

Told. In [12] parameter distribution probabilities are quenched according to individual parameter

annealing temperatures Ts. Naturally, this is highly impractical for large number of parameters. There

are even SA algorithms that do not have analytical cooling schedule. For instance, in [30] annealing

schedule is represented by f(T0; n0); (T1; n1); :::; (Tm; nm)g - a list of decreasing temperatures Ti and

the required number of moves ni to reach equilibrium at temperature Ti.

All of the above algorithms have two major problems. First, these schedules imply only the

reduction of temperature with time. For instance, in metallurgical annealing it is not unusual to

inspect the structure of the system during the annealing process in order to detect the polycrystalline

state, and to increase temperature to remelt it. Kirkpatrick et al [1] suggested that quantity analogous

to speci�c heat should be introduced to indicate that freezing has begun and hence that very slow

cooling is required. Application of such criterion would enable one to determine when parameter

controlling cooling rate � should be increased. In such manner, annealing can start with smaller

values of �, i.e. faster cooling rate, thus reducing the necessary computational time. However,

computing of e�ective speci�c heat also requires time and memory. There are cooling schedules that

enable switching between �min and �max [29], or gradually changing value of � towards �min or �max,

depending on the demands of the system [4, 6].
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Still, these cooling schedules also employ only cooling, though with variable cooling rate. Nev-

ertheless, need for the occasional heating of the system was recognized. For example, adaptive SA

proposed in [31] employs both increasing and decreasing of temperature, depending on the ratio of

uphill and downhill moves. Matsuba [17] varied temperature according to decrement in the objective

function E, thus allowing increases of the temperature when needed. However, proposed solution

required substantial analytical e�ort even for the simplest one-dimensional problem, so it is obvious

that could be of no use for real-size problems.

All previously described cooling schedule, although they sometimes can cope with the �rst problem,

do not solve the second one. The second problem is related to the traditional choice of temperature as

control parameter. The temperature is varied in one way or another during the simulation in order to

reduce AP of uphill moves, thus con�ning the system in vicinity of the global minimum. However, it is

evident that really important parameter is not the temperature itself, but the acceptance probability.

Let us describe the concept of acceptance-probability-controlled simulated annealing (APCSA).

In each outer loop acceptance probability is lowered according to the cooling schedule [9, 10].

Acceptance probabilities depending on the outer loop counter M are given by the normal distribution:

�M = �init exp(�M2=2�2): (12)

The temperature TM is then determined as

TM = �
hj�Ejacci

ln(�M)
: (13)

where �M is the desired acceptance probability, and hj�Ejacci is the average of the absolute change
in the cost function at the preceding temperature. This cooling schedule enables occasional rises of

the temperature, where monotonously decreasing function [�1= ln(�M)] provides the needed average

reduction of the temperature.

It is evident that this cooling schedule increases the temperature when the values of hj�Ejacci are
signi�cant. Also, it should be noted that memory of connection between T and hj�Ejacci established in
the initial temperature determination process can be easily lost with standard temperature controlled

cooling schedules, especially in regions where objective function has valleys with steep walls or deep

pits. In the APCSA algorithm, correspondence between temperature and the average of absolute

change in the objective function is reestablished at the end of each inner loop. This feature is crucial,

since AP depends not only on temperature, but also on the change of the objective function. Therefore,

this feature, together with the ability of occasional rises of the temperature, enables more e�cient

escaping local minima and faster convergence of APCSA algorithm compared to the standard SA.

In the following section the APCSA algorithm with adaptive move generation procedure (APCSA1)

was severely tested and compared its performances with the performances of APCSA algorithm with

random move generation procedure (APCSA2) of Hsu et al. [24], and to the SA algorithm proposed

by Catthoor et al. [6] (CSA) with both move generation procedures stated above (CSA1,CSA2).

III Tests and results

Two families of multiminima test functions were employed. The �rst family of multiminima func-

tions is the function used by Alu�-Pentini et al. [34] and Dekkers et al. [19].

g(x) =
�

n
[k1sin

2�y1 +
nX
i=1

(yi � k2)
2 � (1 + k1 sin

2 �yi+1) + (yn � k2)
2] (14)

where yi = 1 + 0:25(xi + 1), k1 = 10, k2 = 1, and xi 2 [�10; 10]; i = 1; n. This function has roughly

5n local minima. In cited references, this function was tested for three variables. We performed tests

with 20, 50 and 100 variables. Function g of two variables is shown on Fig. 3. Obtained results are

presented on Fig. 4, Fig. 5 and Fig. 6, respectively.
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The second family of multiminima functions, also investigated by Alu�-Pentini et al. [34] and

Dekkers and Aarts [19], is given by

h(x) = k3

(
sin2(�k4x1) +

n�1X
i=1

(xi � k5)
2[1 + k6 sin

2(�k4xi+1)] + (xn � k5)
2[1 + k6 sin

2(�k7xn)]

)
(15)

where k3 = 0:1, k4 = 3, k5 = 1, k6 = 1 and k7 = 2. In [19] this function, whose two-dimensional

segment is shown on Fig 7, was investigated for �ve variables xi 2 [�5; 5]; i = 1::5, i.e. in the area

where there are roughly 155 minima. In this paper, family of test functions h(x) was investigated for

20, 50 and 100 variables xi 2 [�10; 10]; i= 1; n, and obtained results are shown on Fig. 8, Fig. 9 and

Fig. 10, respectively.

It can be observed that APCSA algorithm with the adaptive move generation procedure in all

cases achieves the lowest cost function value. What's more, new adaptive move generation procedure

not only improves performances of the APCSA algorithm, but also signi�cantly ameliorates CSA

algorithm so that APCSA2 algorithm and CSA1 algorithm have similar performances, but results of

both algorithms depend on the initial values. In some cases CSA1 algorithm with new move generation

procedure can obtain the same order of magnitude of the cost function as APCSA2. CSA2 - algorithm

with random move generation procedure of Hsu et al. [24] in all cases shows the worst performances,

i.e. fails to locate global minimum, and achieves the highest cost function value, far from near-optimal

one.

IV Application to optical constants of aluminum

For �tting the optical constants of aluminum, algorithm with best performances APCSA was

used. The both Drude [35, 36] and the Lorentz-Drude model [37, 38] were often employed for the

parametrization of the optical constants of aluminum. According to the Lorentz-Drude model, the

dielectric permitivity function is described with

�̂r(!) = �̂r
(f)(!) + �̂r

(b)(!): (16)

FIG. 3. Multiminima test function g of two variables.
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FIG. 4. Cost function vs. normalized number of iterations (bottom axis) and number of iterations

(top axis) for the function g of xi 2 [�10; 10]; i= 1; 20, with initial values (�5; 5; 0;�5; 5)� 5.

FIG. 5. Cost function vs. normalized number of iterations (bottom axis) and number of iterations

(top axis) for the function g of xi 2 [�10; 10]; i= 1; 50, with initial values (�5; 5; 0;�5; 5)� 10.
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FIG. 6. Cost function vs. normalized number of iterations (bottom axis) and number of iterations

(top axis) for the function g of xi 2 [�10; 10]; i= 1; 100, with initial values (�5; 5; 0;�5; 5)� 20.

FIG. 7. Multiminima test function h of two variables.
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FIG. 8. Cost function vs. normalized number of iterations (bottom axis) and number of iterations

(top axis) for the function h of xi 2 [�10; 10]; i= 1; 20, with initial values (�5; 5; 0;�5; 5)� 5.

FIG. 9. Cost function vs. normalized number of iterations (bottom axis) and number of iterations

(top axis) for the function h of xi 2 [�10; 10]; i= 1; 50, with initial values (�5; 5; 0;�5; 5)� 10.
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FIG. 10. Cost function vs. normalized number of iterations (bottom axis) and number of iterations

(top axis) for the function h of xi 2 [�10; 10]; i= 1; 100, with initial values (�5; 5; 0;�5; 5)� 20.

FIG. 11. Aluminum: comparison of the tabulated dielectric function (from Ref. [37] - open circuits)

and model dielectric function calculated in this study (solid line).
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In the above equation, contributions of intraband transitions (free electron e�ects) are separated from

interband transitions ( bound electron e�ects), as shown in [39, 40]. The intraband part �̂r
(f)(!) of

dielectric function is the well known free electron or Drude model

�̂r
(f)(!) = 1�


2
p

!(! + i�0)
; (17)

while the interband part of the dielectric function �̂r
(b)(!) is given with the Lorentz equation for

insulators

�̂r
(b)(!) = �

kX
j=1

fj!
2
p

(!2 � !2
j ) + i!�j

; (18)

where !p is the plasma frequency, k is the number of interband transitions with frequency !j , oscillator

strength fj and lifetime 1=�j , while 
p =
p
f0!p is the plasma frequency associated with intraband

transitions, f0 is oscillator strength for electrons contributing in intraband processes, and �0 is the

intraband damping constant.

The following objective function was used for the model parameter estimation:

E(p) =
i=NX
i=1

"������r1(!i)� �
exp
r1 (!i)

�
exp
r1 (!i)

�����+
������r2(!i)� �

exp
r2 (!i)

�
exp
r2 (!i)

�����
#2

: (19)

The tabulated intrinsic optical constants of aluminum from the recent study of Raki�c[37] were

employed for �tting. Interband transitions are expected at about 0.4eV, 1.5eV, 2.1eV and 4.5eV.

Final parameter values are presented in Table 1. The values of the oscillator strengths correspond to

the plasma frequency ~!p =14.98 eV [37]. Figure 11 shows excellent agreement between tabulated

(open circuits) and model (solid line) dielectric function of aluminum.

TABLE 1. Parameter values for aluminum.

j 0 1 2 3 4

fj 0.498 0.248 0.045 0.196 0.010

�j 0.044 0.304 0.288 1.502 2.794

!j 0 0.133 1.546 1.802 5.707

V Conclusion

Simulated annealing has been widely used technique for global optimization. A number of modi�-

cations of the algorithm have been devised, to improve the convergence and ability of escaping local

minima. Some of the signi�cant modi�cations have been described. To illustrate the e�ectiveness of

SA approach in �nding the global minimum, four di�erent SA algorithms were tested on two families

of multiminima test functions. After �nding out which algorithm shows the best performance, its

application to determination of the model parameters of optical constants of aluminum was demon-

strated. Obtained excellent agreement between experimental and calculated data once again proves

the ability of chosen algorithm to locate the global minimum of the objective function, which in this

case was the sum of squared relative di�erences between experimental and calculated data.
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