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The genetic algorithms are described in detail. Special attention is given to the

genetic algorithms designed for solving continuous optimization problems. Elite genetic

algorithm with adaptive mutations, which was developed for model parameter estima-

tion, is shown to be clearly superior over its classical counterpart on two families of test

functions for 20, 50 and 100 variables. This algorithm is applied to determine param-

eters of the modi�ed Lorentz model of optical constants of crystalline and amorphous

silicon dioxide.

I Introduction

Genetic algorithms (GAs) [1] are stochastic global search methods that mimic the concept of natural

evolution. Due to the nature of the algorithm, their successful application was mostly restricted to
optimization problems whose solution can be conveniently represented in binary form. However, there

is a rising interest in applying genetic algorithms to continuous optimization problems, especially since
there is no need for initial estimates, which is important advantage of GAs over other stochastic search

methods like, for instance, simulated annealing [2]. For that reason, various modi�cations of original
GAs have been reported [3, 4, 5, 6, 7].

GAs search for optimal solution by employing mechanisms of natural evolution: selection, mating

and mutation, which are applied to the set of possible problem solutions, called population. Each
element of the population, called string or chromosome, is represented by vector of variables. Each

element of the chromosome is, by analogy, termed a gene. Chromosomes are characterized with
performance with respect to some objective function, called �tness. Highly �t individuals have a high

probability of being selected for reproduction, i.e. they may survive or give o�spring in the next
generation. Strings with lower �tness have correspondingly lower probability for transferring their

genes to following generations. This is illustrated on Fig 1, where shade of gray represents �tness -
the lighter shade, the better gene.

47



48 Aleksandra B. D- uri�si�c

FIG. 1. Illustration of GA: shade of gray represents �tness: the lighter shade, the more �tted gene.

There exist many variations of GA [8], di�ering in chromosome representation, selection, repro-

duction and mutation, existence of �tness scaling etc. It was shown that oating-point number rep-
resentation, instead of binary string representation common for classical GAs, is more convenient

for continuous optimization applications [5, 6, 9]. By representing variable values with real numbers,
length of the chromosome is equal to the number of variables, thus being much smaller than in the case

of binary coding. Also, conversion of decimal numbers into binary ones and vice versa is avoided by
using oating-point representation. What's more, important feature of oating-point representation

is that variable values can not be altered or destroyed during crossover operation, while in the case
of binary coding such undesired changes of variable values can lead to loss or deterioration of genetic
information. Another important advantage of real-coded GAs is absence of Hamming cli� problem

inherent to binary coded GAs [1, 9, 10]. Such problems could be overcome by the use of Gray coding,
but that leads to higher nonlinearities with respect to recombination. Also, using real-coding reduces

the dimensionality of the problem thus reducing the opportunity for deception, but possibilities for
new obstacles to convergence are introduced. The fact that real-coded GAs can in certain cases be

blocked from further progress has been recognized and discussed [9].
There has been much work in modifying the real-coded GAs in order to make them as successful

in solving continuous optimization problems as they binary counterparts are in solving discrete op-
timization problems [3, 4, 10, 11]. Main shortcoming in continuous optimization applications of the

GAs appears to be the discrete sampling of the solution space, which results in the fact that global
minimum can be located only roughly. For obtaining the location of global minimum more precisely a
huge number of the chromosomes in the population is required. Several methods have been proposed

to overcome this di�culty. Obviously, if new values could be introduced during the optimization
procedure, that would reduce the necessary number of chromosomes in the population for �nding sat-

isfactory solution of the problem. Traditional role of the mutation operators to introduce new values
in order to prevent premature convergence to a local minimum.
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However, mutation probabilities are usually very small, because otherwise algorithm might not
converge at all. This is the main reason why mutation is usually considered to be of less importance

than selection and crossover operators [1, 9]. Consequently, the work in development of real-coded GAs
suitable for continuous optimization was concentrated on devising crossover operators suitable for real

numbers. Various crossover operators for continuous variables, like intermediate or line recombination
[4] or crossover by di�erent continuous mixing functions [3], have been introduced. Deb and Agrawal

[10] have suggested simulated binary crossover (SBX), which has similar search power to single-point
crossover used in binary GAs. Main advantage of this crossover was demonstrated for cases when
initial population was generated in bounds that do not bracket optimum variable value, since SBX

operator enables search outside initial boundaries.
However, this feature represents important shortcoming for model parameter estimation, since

there is no guarantee that obtained solution would be physically meaningful . Eshelman and Scha�er
[11] suggested blend crossover operator BLX-� which randomly picks a point in the range (p1 �

�(p2 � p1); p1 + �(p2 � p1)) and best results were reported for � = 0:5. Common feature of these
algorithms is that new values are introduced in the process of crossover, while mutation operator only

slightly perturbs a parameter around its current value. These crossover operators were compared to
conventional ones designed for binary-coded GAs , but only on test functions for up to 20 variables

[4, 10]. However, for large number of variables, the strategy of introducing new values in the process
of crossover fails to give good results. Djuri�ci�c et al [7] have suggested di�erent approach in solving
the problem, introducing the concept of parameter space size adjustment. The main idea was to

narrow the solution space by improving the guess of the global minimum position. This is achieved
by introducing one additional loop. Initial population is generated, classical GA is performed, and

boundaries for each parameter are narrowed towards the obtained average value for that parameter in
the inner loop �nal population. New initial population is generated in the new boundaries and GA is

performed again. Outer loop is executed for a speci�ed number of iterations nmax which means that
required time for performing this algorithm is nmax times larger than for corresponding classical GA.

Elite genetic algorithm with adaptive mutations (EGAAM) is also based on the similar concept of
narrowing the parameter boundaries, but there is no observable increase of the CPU time requirements.

In other words, executional time of EGAAM and GA are approximately the same, while the precision
of EGAAM is signi�cantly better.

Performance of the EGAAM is compared to classical GA on two families of multiminima test

functions. After proving that EGAAM is reliable tool for solving continuous optimization problems,
its ability to determine model parameter values on the basis of known experimental results is demon-

strated. Model parameter estimation is performed by minimizing the objective function, usually in the
form of sum of squared absolute or relative di�erences between calculated and experimental values,

which often has multiple minima. In many areas, frequently arises the problem of di�culty or inability
of providing initial estimates of parameter values. Sometimes not even order of magnitude of model

parameters can be correctly guessed. In such cases, application of global optimization algorithm is
imperative.

Let us discuss in more details model parameter estimation problem and the employed model. One
of the frequently employed models for modeling the optical properties of solids is Lorentz oscilla-
tor model (LOM) or Lorentz-Drude model for metallic solids, where free-carrier absorption should

be taken into account [7, 12, 13, 14, 15]. LOM assigns oscillators to major critical points (CPs)
in joint density of states to model direct interband transitions, with some additional oscillators to

model absorption between CPs. Each oscillator is characterized with oscillator strength, frequency
and damping constant. In the model employed in this paper, additional parameter per oscillator is

introduced in order to improce exibility of the model, as will be described in detail. Initial values for
oscillator frequencies can be estimated from band structure calculation, while for oscillator strengths

and damping constants even an order of magnitude is unknown. Therefore, classical optimization
techniques (simplex, Levenberg-Marqardt etc.) require initial estimates close to �nal values to obtain

meaningful solution, cannot be employed for solving this problem.
Applications of global optimization methods like Metropolis algorithm and simulated annealing
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to model parameter estimation have been reported recently [14, 15, 16, 17, 18, 19]. In part I of
the article, published in the previous issue of this publication [20], simulated annealing approach

to model parameter estimation was discussed. However, simulated annealing algorithm shows certain
dependence on initial values in practice, which can be reduced but not completely eliminated by careful

choice of cooling schedule and move generation procedure. The main advantage in applying GAs to
model parameter estimation is the fact that initial estimates are not required. However, problem of

achieving satisfactory precision was encountered - to calculate accurately optical properties with LD
model, at least two signi�cant digits in estimated model parameter values are required, and for some of
the parameters only a priori available information is that they can have a value between 10�4 and 10.

Independency on initial values together with arbitrary precision in locating the global optimum can
be achieved with combinations of simulated annealing and GAs, but CPU time requirements of such

algorithms are immense [21]. Another way of achieving improvement in the precision of locating the
minimum is by introducing adaptive parameter space size in mutation process, which is incorporated

in the EGAAM algorithm described here. In this work it is shown that EGAAM algorithm obtains
parameter values of optical constants model that give theoretical data exhibiting good agreement with

experimental values on the example of crystalline and amorphous silicon dioxide.
In the following section investigated algorithms, GA and EGAAM, are described. Section III

is devoted to the comparison of performance of these algorithms applied on nine multiminima test
functions. In section IV a short description of the applied model for the optical constants is given and
EGAAM was used to estimate its parameters for crystalline and ampurphous SiO2.

II Description of the algorithm

In implementation of GA must be de�ned representation of chromosomes, generation of initial
population and genetic operators: selection, reproduction and mutation. In the following are presented

the chromosome representation and genetic operators employed in investigated algorithms.

II.1 Representation of chromosomes and population generation

Continuous variables can be handled either directly, through real-valued (oating-point) represen-
tation and appropriate genetic operators, or by standard binary representation schemes and standard

genetic operators. In case of binary representation, real values are approximated to the necessary
degree with a �xed-point binary scheme, or the logarithm of the variable is encoded, thus reducing

the required number of bits. However, since oating point representation [5, 9] proved to be more
convenient for continuous optimization problems, it was applied in this paper. In oating-point chro-
mosome representation, each gene has the value of the corresponding variable p(k); k = 1; nv, where

nv is the number of variables. Values p(k) in chromosomes of the initial population are generated
according to the formula

p(k) = pl(k) + (pu(k)� pl(k)) � r; (1)

where r is a random number r 2 [0,1], and pl(k) and pu(k) are initially set boundaries. In such a

manner, con�nement of variables in the speci�ed domain is achieved insuring that all variables have
physical interpretation, so that, for instance, in case of model parameter determination we can not
get a negative value for frequency.

II.2 Selection and reproduction

Many di�erent existing selection methods can be divided in two categories: random selection
methods and selection methods based on the �tness measure. The former methods, like roulette
wheel [6] and similar methods [22] introduce stochastic errors. These errors are reduced in the latter
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ones by taking into account the �tness of an individual, like in binary tournament method [23],
"stochastic remainder sampling without replacement" [24], or any other selection method incorporating

following concept - the more �tted chromosome, the higher chance of being selected as a parent
[3, 4, 7, 25, 26, 27]. For reducing the bias of selection method to highly �t individuals and thus

preventing the premature convergence, �tness scaling can be employed [24, 27]. In this paper, elitist
selection mechanism [25, 26, 28] is employed. In elitist selection, Ps percent of the new generation is

produced by selection, and Pc percent is produced by crossover. Ns = N � Ps strings with the best
�tness, where N is the number of strings in the population which enter directly the next generation.
The Nc = N � Pc strings in the new population are generated by crossover among the parent strings

which were chosen �tness proportionally between all the strings in the current population. The
probability that a string will have o�spring in the next generation is inversely proportional to

F (i) =
f(i)PN
i=1 f(i)

(2)

where f(i) is the �tness value of the i-th string.

II.3 Crossover

Operation of crossover exchanges subsets of elements between two parent chromosomes. If the

subset consists of adjacent elements, it is an "ordered combination" crossover, while in "uniform
combination" crossover each element is randomly chosen [22]. Ordered combination crossover can be

one-point or two-point (points of crossover are randomly selected, and elements between them are
swapped). In algorithms investigated here, uniform combination crossover is employed, providing that

parameter values are not altered or destroyed during the crossover, while new values are introduced
in the process of mutation. Crossover is performed by generating a random integer N1 2 [nmin; nv],

where nv is a number of variables, i.e. number of elements in strings, and nmin is the minimal number
of elements exchanged in the crossover. Best results were obtained for nmin = nv=2. When number of
elements to be exchanged is determined, random integers ni 2 [1; npar], i = 1; N1 are generated and

elements at positions ni are swapped.

II.4 Mutation, concept of adaptive mutations

Mutation is necessary for maintaining certain diversity in the population, thus preventing the quick
convergence to a local minimum. Mutation is usually performed by randomly altering individual

genes with probability Pm. Real coded GAs usually perturb the solution a little around current
value, which can be done with uniformly or normally distributed step, or with speci�cally designed

manner of choosing random step [4], while binary GAs usually adopt bitwise complement operator.
The mutation step can be constant, or vary with number of generations [29] or with number of

successful mutations [30]. If the mutation probability is too large, mutation no longer improves
performance of the population, because it enables losses of genetic information which could cause

poor convergence [31]. Although Pm is much smaller than Pc, and ergo mutation is usually considered
a background operator [1, 9] that ensures that probability of searching any particular subspace is never

equal zero, replacing random mutations with adaptive mutations substantially improves performance
of the algorithm, due to introducing the new values generated in the region containing the global
minimum.

The introducing of new values is performed as follows. In the current generation, average value
�̂(k) of parameter p(k) is computed, and Pm percent of the chromosomes in the next generation are

formed by generating their genes in the same manner as during the creation of initial population, but
in the narrowed boundaries. New boundaries for each parameter are determined according to

pnew�u(k) = pold�u(k)� c � (pold�u(k)� �̂(k)) (3)



52 Aleksandra B. D- uri�si�c

pnew�l(k) = pold�l(k) + c � (�̂(k)� pold�l(k)) (4)

where �̂(k) is the average value of the parameter p(k) in the current population, and c is a prede-
termined positive number 0 < c < 1. In such a manner, a speci�ed number (Nm = N � Pm) of new

chromosomes is introduced in every generation. During the evolution, while �̂(k) changes towards
the optimal value, parameter values in new chromosomes are more and more concentrated around

�̂(k) , providing �ner structure and more signi�cant digits in obtained variable values. For preventing
excessive narrowing of the boundaries, their extreme values are set to pmax�l(k) = �̂(k) � (1� d) and

pmin�u(k) = �̂(k) � (1 + d), where d is real number having a value between 0 and 1. Concept of such
adaptive mutations is incorporated in EGAAM. To investigate clearly the inuence of adaptive mu-

tations to the performance of the algorithm, both EGAAM and classical GA have the same selection
and crossover mechanism, they di�er only in the mutations procedure. In classical GA investigated

here, uniform distributed mutation is performed by changing the parameter value with probability
Pm. New parameter value is given by

pmut(k) = p(k) + sgn ��p(k) (5)

where pmut(k), p(k) are values of parameter k after and before mutations, respectively, and sgn is a
random number in interval [-1,1], while �p(k) is the step value for parameter k.

III Test of the GA and EGAAM

To compare performance of EGAAM and GA, experiments on two families of test functions for 20,

50 and 100 variables were performed. It is well known that performance of GAs depends strongly on the
parameters of the algorithm: N , Pc, Ps and Pm, and in the case of EGAAM, two additional parameters

c and d. In results presented here inuence of the number of chromosomes in the population N was
investigated, since it is only one of the above parameters that signi�cantly inuences the required

computational time. Before that, test runs on all test functions were performed to determine the
optimal values for other algorithm parameters. The best results for classical GA were obtained for

Pc = 0:2, Ps=0.8 and Pm=0.01, while optimal values for EGAAM were Pc = 0:35, Ps=0.6 and
Pm=0.05. Parameter d was set to value 0.05, while c = cc=nmax, where nmax is the maximal number

of generations. Results given here correspond to nmax = 200 and cc = 3.
The �rst family of multiminima functions was employed by Alu�-Pentini et al. [32] and Dekkers

and Aarts [33]. It is given by

g(x) =
�

n

"
k1 sin

2 �y1 +
n�1X
i=1

(yi � k2)
2(1 + k1 sin

2 �yi+1) + (yn � k2)
2

#
; (6)

where yi = 1 + 0:25(xi + 1), k1 = 10, k2 = 1. This function, shown for two variables on Fig 2, has

roughly 5n local minima for xi 2 [�10; 10]; i = 1; n. In order to determine inuence of the number
of chromosomes in the population to the �nal objective function values, calculations for 2000, 1000,

and 250 chromosomes were carried out. Obtained results for 20, 50 and 100 variables are presented
in Fig. 3. It can be observed that EGAAM in all cases obtains values lower for several orders of
magnitude, compared to results of GA, and its performance considerably less depends on the number

of chromosomes in the population. In other words, EGAAM gives satisfactory results even for 250
chromosomes in the population when GA fails to locate the minimum.

The second family of multiminima functions, also investigated by Alu�-Pentini et al. [32] and
Dekkers and Aarts [33], is given by
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FIG. 2. Function g for two variables

h(x) = k3

(
sin2(�k4x1) +

n�1X
i=1

(xi � k5)
2[1 + k6 sin

2(�k4xi+1)] + (xn � k5)
2[1 + k6 sin

2(�k7xn)]

)
(7)

where k3 = 0:1, k4 = 3, k5 = 1, k6 = 1and k7 = 2. In [33] this function, whose two-dimensional segment

is shown on Fig 4, was investigated for �ve variables xi 2 [�5; 5]; i= 1::5, i.e. in the area where there
are roughly 155 minima. In this paper, family of test functions h(x) was investigated for 20, 50 and
100 variables xi 2 [�10; 10]; i= 1; n. Obtained results are shown in Fig. 5for N = 2000 chromosomes

in the population only, for the sake of comprehensibility of presentation since the dependence of �nal
solution on the number of chromosomes in the population is similar for all investigated functions.

For this function EGAAM also achieves lower objective function values, for about three orders of
magnitude.

IV Application to silicon dioxide

In this section, the modi�ed Lorentz model is described. Di�culties of LOM in modeling accurately
optical properties in the vicinity of strong absorption lines have already been recognized [34, 17],
since maximal changes in refractive index described by LOM are comparable to the maximal value

of extinction coe�cient. One principal reason for the inaccuracy of the LOM is that Lorentzian
shape of the spectral line is characterized with wide wings, leading to higher absorption and higher

values of imaginary part of dielectric function �2. Therefore, it is often the case that there is a good
agreement with experiment for real part of dielectric function �1 (or imaginary part �2), while there

are signi�cant discrepancies for the other part �2 (�1). Naturally, this causes existence of disagreement
with experiment in all other optical constants, like refractive index, reectance etc. This feature can

have two causes: bad quality of experimental data, or inadequacy of the used model. For LOM,
casuality, linearity, reality and Kramers-Kronig requirements are automatically satis�ed, so that the

agreement with experiment should be equally good for real and imaginary part of dielectric function,
and the refractive index values calculated from dielectric function given by LOM should also agree
well with the experimental data. Modi�cation of the LOM employed here introduces one additional

parameter which enables varying the shape of the line, and, therefore, greater exibility of the model.
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FIG. 3. Comparison of the algorithms for the function g of xi 2 [�10; 10]; i = 1; 20; 50; 100, for

2000,1000, and 250 strings in the population.

FIG. 4. Function h for two variables

The real and imaginary part of complex dielectric function �(!) = �1(!) + i�2(!) are expressed in

the following form

�1(!) = �
1
+

kX
j=1

Fj(!
2
j � !2)

(!2 � !2
j )

2 + (!�j)2
; (8)

�2(!) =
kX

j=1

Fj!�j
(!2 � !2

j )
2 + (!�j)2

; (9)
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FIG. 5. Comparison of the algorithms for the function h of xi 2 [�10; 10]; i = 1; n;n = 20; 50 and

100, for 2000 strings in the population.

where k is the number of interband transitions with frequency !j and lifetime 1=�j , while Fj = fj!
2
j

is parameter associated with oscillator strength fj .

When the dielectric function is determined, refractive index is calculated from the expression

n =

s
1=2

�
�1 +

q
�21 + �22

�
: (10)

In the work of Kim et al [35] it was shown that the shape of dielectric function that closely mimics
one with assumed Gaussian broadening (which can not be calculated analytically) can be obtained

for suitable values of parameter � if the damping constants are replaced with frequency dependent
expression

�0j = �j exp

0
@��j

 
~! � Ej

�j

!2
1
A (11)

Recently, Raki�c et al [18] have shown that better agreement with experimental data for GaAs/AlAs can
be obtained by including the above expression in Adachi's model of optical properties of semiconductors

[36]. In this work the same frequency dependant damping is introduced in LOM model. In such a
manner, the line shape can vary from purely Lorentzian for low values of �=�, for �=�=0.3 the line

shape is nearly Gaussian, while with the further increase of �=� the wings of the peak in �2 can be
reduced even further. Also, greater values of �=� give more pronounced structure in �1and refractive
index n.

Model parameters were determined by minimizing the following objective function

E(p) =
i=NX
i=1

�
n(!i)

nexp(!i)
� 1

�2
: (12)

where the summation is performed over available experimental points at frequency !i, while n
exp(!i),

n(!i) are the experimental and calculated values of refractive index at point !i, respectively.
There have been numerous studies of the room temperature optical properties of amorphous SiO2

(glass). The data used in this paper, ranging from 0.15 eV to 25 eV, are from the study of Philipp
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FIG. 6. Refractive index of amorphous SiO2 vs. energy; circles - exp. data, solid line - modi�ed LOM.

Inset shows imaginary part of the index of refraction k(!) as a function of energy.
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FIG. 7. Refractive index of crystalline SiO2 vs. energy; circles - exp. data, solid line - modi�ed LOM.

Inset shows imaginary part of the index of refraction k(!) as a function of energy.

[37], who collected data from several sources. Fig. 6 shows refractive index of amorphous SiO2 (glass)
vs. energy. Open circles represent experimental data, solid line best �t to modi�ed LOM. Inset

shows imaginary part of the index of refraction k(!) as a function of energy. In modeling the index of
refraction of crystalline silicon dioxide, the data tabulated by Philipp in Handbook of Optical Constants

of Solids [38] are employed, in the range 0.15 eV to 25 eV. Obtained results are shown on Fig. 7
depicting real part of the index of refraction n(!) as a function of energy, while inset shows imaginary

part of the index of refraction k(!) as a function of energy. For both materials, excellent agreement
with the experimental data is evident.
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V Conclusion

Genetic algorithms as a tool for solving continuous optimization problems are described. Perfor-

mance of the elite genetic algorithm with adaptive mutations, which was developed for solving model
parameter estimation problem, is compared to the performance of conventional genetic algorithm on

two families of multiminima test functions for 20, 50 and 100 variables. After verifying the superiority
of this algorithm over its classical counterpart, parameters of the modi�ed Lorentz oscillator model

have been determined for amorphous and crystalline silicon dioxide. The employed model di�ers from
the conventional Lorentz oscillator model in terms of the assumed broadening type, i.e. each oscillator

is characterized with four instead of three parameters, in order to enable varying of the broadening
function from Lorentzian over Gaussian to even narrower lineshapes. Excellent agreement with the
experimental data is obtained for both investigated materials.
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