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The multiband envelope-function model is extended to be able to handle twinning

boundaries and more complex structures based upon it. The Hamiltonian for the mutu-

ally rotated bulk parts is set appropriately, and the e�ective scattering potential at the

interface is modeled by a state dependent diagonal matrix �-function potential centered

at the interface. Potential strengths are �tted to the energies of bound states. Use of

the method is demonstrated on the example of p-doped twinning superlattices based

on germanium and gallium arsenide. The superlattice electronic structure exhibits zero

energy gaps as well as folding and anticrossing behavior and agrees very well with the re-

sults of pseudopotential calculations. Intersubband optical absorption is also calculated.

Each absorption peak is attributed to the speci�c transition, which obeys appropriate

selection rule for the given polarization of the incident light. Relative magnitudes of the

absorption coe�cients are explained by the band structure anisotropy of germanium.

Finally, it is shown that the enhanced scattering due to the symmetry removal in the

twinning superlattice may bring considerable bene�ts in the detection of infrared light.

I Introduction

It is well established that classical superlattice states are well described by the multiband e�ective

mass theory [1]. In addition to composite structures, where con�nement is provided by the band o�set,

change of the atomic stacking sequence (crystal twinning) may also be employed for that purpose

[2]. Structures of this kind are realized by periodic repetition of twinned layers, therefore they are

appropriately called twinning superlattices (TSL's) [2]. These may be envisaged as composed of layers

rotated by � rad in respect of each other about the [111] crystallographic direction. Single twinning

boundaries and structures derived from them (intrinsic and extrinsic stacking faults) are among the

most common dislocations in crystals, which almost always appear undesirably, and adversely a�ect

e.g. electronic transport properties. However, the periodic array of twinning boundaries in TSL brings

about coherent scattering, resulting in the appearance of miniband structure. The electronic structure
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calculation of either single dislocations or TSL's normally requires microscopic methods. For instance,

the self-consistent pseudopotential method was used for the electronic structure calculation of single

dislocations [3], and empirical pseudopotential method (EPM) for the electronic structure and optical

properties of TSL's [2, 4].

As for the possible applications of these systems, it has been known for more than a decade

that systems of reduced dimensionality o�er unique possibility of direct optical transitions within a

single band or a few coupled bands [5]. This has had great impact on the technology of infrared

detection, and applications are expected to be more diversi�ed in forthcoming years. Among many

other advantages, these detectors rely on well developed technologies of the III-V semiconductor growth

and the litographic patterning. In accordance with the inverse dependence of the photoresponsivity

on the e�ective mass, one may expect to see using only n-doped semiconductors for this purpose [6].

Yet, quantum mechanical selection rule disables the detection of normally incident light therein. This

restricition is lifted in systems based on p-doped materials [7], where interaction of the electron system

with in-plane polarized light is enabled by valence subbands mixing, though the responsivity is lower

due to the larger e�ective mass. There have been a few attempts to realize these detectors, notable

examples being GaAs/AlGaAs [8, 9, 10, 11, 12], InGaAs/InP [13], GaInAs/AlInAs [14], GaSb/GaAlSb

[15], GaSb/InAs [16], InGaP/GaAs [17], and Si/SiGe [18, 19] two-dimensional electron gas (2DEG)

structures. It was shown that theoretical results based on envelope-function theory (EFT) match

quite well the experimental �ndings [10, 11]. Using strained systems may be bene�cial [20, 21, 22],

though quantum well infrared photodetectors (QWIP's) are still commonly fabricated of n-doped

semiconductors, because of their superior performance. It is of interest to explore p-doped TSL's

in this respect, since high intersubband absorption therein may be expected as a consequence of

symmetry mismatch induced scattering, rather than by con�nement by heterostructure potential.

The p-like hole states are far more a�ected by twinning than are s-like conduction band states in a

direct gap semiconductor, and clearly only the former should be explored in this respect.

Microscopic methods have, along with their advantages, some drawbacks as well. For one, it is their

complexity and the associated numerical problems, which makes di�cult their use for larger systems.

For two, while such methods fairly succesfully predict the band structure features in the � 10 eV range,

they may fail to reproduce accurately the �ne details of the band structure in narrow energy ranges

that one may be most interested in. For that reason it is useful to explore the possibility of using the

envelope-function k � p method for semiconductor structures derived from twinning boundaries. This

is the problem we address to in this letter. Our aim is to form the simplest, yet accurate enough model

which would predict electronic and optical properties of such structures, in particular for the valence

band where most interesting e�ects occur. An additional bene�t would be a rather straightforward

and physically transparent characterization of states and optical transitions among them.

The paper is organized as follows. In Sec. II the theory of electronic structure is presented and

described in detail. The eigenfunctions from this part are then used in Sec. III to calculate matrix

elements and the absorption coe�cient. The pecalurities of the miniband structure and the dependence

of absorption on light polarization and TSL parameters are discussed in Sec IV.

II Envelope-Function Theory

The structure under consideration consists of an in�nite alteration of two oppositely oriented stack-

ing sequences of n andm monolayers of a single semiconductor X(=GaAs,Ge). It may be conveniently

denoted as XnX
0
m. Two subsequent half-periods may be regarded as mutually twisted by � rad about

the z axis, symbolically depicted in Fig. 1 as two oppositely oriented parts. The expression we start

with is a simple envelope-function equation for the manifold of eigenstates of angular momentum,

arranged herein as in Ref. [1]:

(H + V (z))F (z) = EF (z); (1)



Envelope-function approximation for twinning : : : 61

where the kinetic part is given by

H(kx; ky; kz) =
~
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No strain terms are included because, with the �rst two nearest neighbors bond lenghts and angles

FIG. 1. Schematic view of the twinning superlattice. Two parts of the period are mutually twisted

by � rad. Layer A is considered as normal with Brillouin zone kx, ky, and kz axes directed along

[1,1,-2], [-1,1,0], and [111] crystallographic directions, respectively. The same Hamiltonian applies

to the rotated B layer, but in the coordinate system de�ned by unit vectors oriented in the [-1,-1,-2],

[1,-1,0], and [111] directions. The interface �-potentials are also denoted.

same as in bulk, twinning boundary is essentially strain-free [3]. This form applies to the layer with

(say) the obverse orientation, and will be denoted as HA. For the reversely oriented layer we �rst note

that (kx; ky) is a good quantum number for the whole structure, so we �rst constructHA(�kx;�ky; kz),
then rotate the crystal by � rad about the z axis (cubic [111] direction), and, since rotation a�ects

the basis states, apply the rotation matrix, which in this case reads

R = diag(�i;+i;�i;+i;+i;�i) (3)

to get the Hamiltonian for the reversely oriented layer

HB(kx; ky; kz) = RHA(�kx;�ky; kz)R�1 (4)

written in the same basis and the same coordinate system as for the obversely oriented layer. We �nd

that the diagonal matrix elements have the same form in both layers,

A� = P � Q; A� = P +�; P = 
1(k
2
x + k2y + k2z); Q = 
3(k

2
x + k2y � 2k2z); (5)

while the o�-diagonal elements in the two layers are di�erent, and read

BA =

r
2

3
(
2 � 
3)(kx + iky)

2 � 2p
3
(2
2 + 
3)(kx � iky)kz (6)

CA = �
2 + 2
3p
3

(kx � iky)
2 + 2

r
2

3
(
2 � 
3)(kx + iky)kz (7)

and

BB = �
r
2

3
(
2 � 
3)(kx + iky)

2 � 2p
3
(2
2 + 
3)(kx � iky)kz (8)
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CB = �
2 + 2
3p
3

(kx � iky)
2 � 2

r
2

3
(
2 � 
3)(kx + iky)kz: (9)

Here kx, ky, and kz denote the hole wave vector components in the coordinate system oriented along

the [1,1,-2], [-1,1,0], and [1,1,1] crystallographic directions, respectively [23], 
1, 
2, and 
3 are the

Luttinger parameters, � the spin-orbit splitting, andm0 the free electron mass. In a \heterostructure"

HA and HB take the operator form, with kz ! �i@=@z.
Single twinning boundaries and twinning superlattices are generally 
at band structures, with

no macroscopic potential modulation. In the vicinity of the interface, due to non-bulk-like atomic

stacking sequence, the microscopic potential is di�erent from that in bulk (the perturbation extends

� 1 monolayer on either side of the interface [3]). As EPM indicates, this gives rise to interface bound

states, which, however, cannot be found from the EFT Hamiltonian, Eqs. (1)-(7), with V (z) = 0.

Therefore, the EFT Hamiltonian has to be amended with an appropriate short range e�ective interface

potential, to act upon envelope functions. The simplest model potential we could devise for this

purpose is the interface-centered Dirac �-function. Calculations indicate that bound states energies

found by EPM cannot be reproduced with a single �-function, and in fact we set three �-functions

acting separately on heavy-hole (HH), light-hole (LH), and split-o� (SO) bands, their strengths being

determined by matching to the EPM results. This is not very unusual, unlike the microscopic potential

which is unique, the macroscopic (e�ective) potential depends on the states it acts on. Therefore, in

a single twinning boundary we have

V (z) =
~2

2m0

diag(VHH; VLH; VLH; VHH; VSO; VSO)�(z); (10)

with an appropriate (Dirac comb) generalization for TSL's. Subject to boundary conditions at inter-

faces and, in case of superlattices, to Bloch conditions, this Hamiltonian leads to the secular equation

of the form:

S =

"
P � R Q

(P +R)E2A(d) ei2qdQE2B(�d)

#
(11)

where

P =

"
XA YA

De�XA +XAG2A(0) De�YA + YAG2A(0)

#
; (12)

R =

"
0 0

D�XA D�YA

#
; (13)

and

Q =

"
�XB �YB

�XBG2B(0) �YBG2B(0)

#
; (14)

where the capital subscripts denote respective layers, and q the superlattice wave vector. Degenerate

eigenvectors corresponding to the same kz (there are six of them in each layer) are alternately arranged

as the subsequent columns of the matrices XA;B and YA;B .

We seek a solution of the system S � c = 0 where c = [cA; cB]
T are the coe�cient of expansion of

the envelope functions in the kz modes. The matrices Deff and D� are given in the Appendix, while

E2A(z) and E2B(z) are given by

E2A(z) =

"
EA(z) 0

0 EA(z)

#
; E2B(z) =

"
EB(z) 0

0 EB(z)

#
; (15)
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respectively, where EA(z) and EB(z) are diagonal matrices made up of the plane wave functions

EA;ij(z) = exp(ikzA;iz)�ij EB;ij(z) = exp(ikzB;iz)�ij : (16)

Here �ij denotes the Kronecker delta symbol. Similarly,

G2A(z) =

"
GA(z) 0

0 GA(z)

#
; G2B(z) =

"
GB(z) 0

0 GB(z)

#
; (17)

where GA(z) and GB(z) denote diagonal matrices

GA;ij(z) = ikzA;i exp(ikzA;iz)�ij ; GB;ij(z) = ikzB;i exp(ikzB;iz)�ij ; (18)

respectively.

It turns out that the complexity of the original problem of �nding zero of the 24� 24 determinant

may be reduced twice if the pivoting algorithm is employed. However, in order to avoid singularities

of the secular equation two such transformations should be performed. These are given by:

Sc � cc =
"

I + iRTqP
�1 QCk

iQTkQ
�1 �QTkQ

�1RTqP�1 + iPTqP
�1 + RP�1 0

# "
ccA
ccA

#
=
h
0
i

(19)

and

Ss � cs =
"
�QT�1k Q�1 + iQT�1k Q�1RT�1q P�1 � PTqP

�1 � iRP�1 0

�iI �RT�1q P�1 iQSk

# "
csA
csB

#
=
h
0
i
;

(20)

where Cq, Sq, Ck, Sk, Tk, and Tq are given by

Cq =
e�iqdE2A(d=2) + eiqdE2A(�d=2)

2
; (21)

Sq =
e�iqdE2A(d=2)� eiqdE2A(�d=2)

2i
; (22)

Ck =
E2B(+d=2) +E2B(�d=2)

2
; (23)

Sk =
E2B(+d=2)�E2B(�d=2)

2i
; (24)

Tk = Ck � S�1k ; (25)

Tq = Cq � S�1k ; (26)

respectively.
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III Absorption Coe�cient

The interaction Hamiltonian is obtained in the A � v gauge by �nding the gradient of the hole

Hamiltonian in k space. This matrix, which obviously has the same structure as the hole Hamiltonian,

Eq. (2), may be conveniently separated into a dipole matrix and an overlap matrix [7]. A few points are

worth noting here. First, HH and LH minibands are coupled by the o�-diagonal matrix elements of the

interaction Hamiltonian. Second, the dominant transition is provided by the dipole matrix, because

of its constancy in the kt plane. Third, the form of B and C matrix elements allows the transitions

which are otherwise forbidden in composite superlattices to occur. For example, the absorption peaks

for x polarized light originate from the HH!LH transitions, where one of the states is a folded one.

In the composite structures, these transitions never take place, but in TSL they become possible due

to the variation of dipole coupling terms in C matrix element of the interaction Hamiltonian. Finally,

the transition matrix elements are furnished by the interface terms, arising from the change of sign

of linear combinations of the Luttinger parameters in the C matrix element. The transition matrix

element is lowered this way, though this e�ect is not so strong in Ge, therefore an order of magnitude

higher absorption than free-carrier absorption in bulk is realized [4].

For the absorption coe�cient the following expression is utilized:

� =
e2~

8�2c�0

1

n~!

+1Z
�1

dkx

+1Z
�1

dky

+�=2dZ
��=2d

dq
X
i

X
f

j ~

2m0

Mfij2

� �=2�

(Ef � Ei � ~!)2 + �2=4
(fn(Ei)� fn(Ef)):

(27)

Here ~! denotes the photon energy, �0 the vacuum permittivity, c the speed of light, e the electron

charge, n the index of refraction, � the Lorentzian full width at half maximum, fn the Fermi-Dirac dis-

tribution function for holes, computed for the initial energy Ei and the �nal energy Ef , and ~Mfi=2m0

denotes the transition matrix element between states i and f , obtained by summing over the four pos-

sible transitions o�ered by the double degeneracy of the initial and the �nal state. In this calculation

the region of important states in the superlattice reciprocal space, bounded by planes intersecting at

(kx; ky; q) = (�0:5,�0:5,��=2d) nm�1, is subdivided into 13� 13� 17 cubes, making up a quite �ne

mesh, where all the relevant states for absorption calculation are taken into account.

IV Results and Discussion

To check the validity of the model, we consider Ge and GaAs based TSL's having n = 9 (d = 2:9

nm) crystalline monolayers in each half period (with obverse and with reverse orientation). The reason

for taking Ge is that multiple twinned ultrathin layers (though not real TSL's) have been observed in

amorphized Ge �lms [24], and for GaAs, TSL-like structure was found in free-standing quantum wires

Ref. [25]. The Luttinger parameters used in calculation are: 
1 = 13:35, 
2 = 4:25, 
3 = 5:69 [28],

and 
1 = 6:85, 
2 = 2:10, and 
3 = 2:90 [26] in Ge and GaAs, respectively. The spin-orbit splitting

energies amount to 282 meV and 340 meV, and the lattice constants are 0.56579 nm and 0.565325 nm

in Ge and GaAs, respectively [26]. The EPM calculated bound states energies of a Ge single twinning

boundary are �25:8 meV and �0:5 meV, corresponding to heavy and light holes, respectively, while

no bound or resonant state was found in the vicinity of the SO band top. The calculated strengths of

the delta potentials are VHH = �2:31 nm�1, and VLH = �1:08 nm�1, and VSO = 0. The eigenenergies

in GaAs amount to �19 meV, �0:3 meV, and �0:65 meV (relative to �), and the corresponding

strengths of the delta potentials are VHH = �1:45 nm�1, VLH = �0:608 nm�1, and VSO = �0:648
nm�1.

The main feature of the electronic structure that EFT predicts is the existence of zero energy gaps,

i.e. the minibands folding at kt =
q
k2x + k2y = 0, as shown in Fig. 2. There is no e�ective mass reversal
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FIG. 2. The miniband dispersion in the direction of the superlattice wave vector, at kt = 0 in (a) Ge

twinning superlattice and (b) GaAs twinning superlattice. Numerous crossings as well as an anticross-

ing between LH+SO states may be noticed.

in the direction of superlattice wave vector, whereas this e�ect obviously occurs in the (kx; ky) plane,

as depicted in Fig. 3. States are designated according to the bulk states dominant in the superlattice

states wave function at kt = 0. These are denoted in Fig. 2 as heavy-hole (HH) and light-hole (LH),

the latter being a shorthand notation for the mixture of light-hole and split-o� bands (LH+SO).

Due to the folding e�ect, di�erent e�ective masses, and uncoupled HH and LH+SO states, there are

numerous crossings between these states in the selected energy range at kt = 0, as Fig. 2 shows. As a

consequence of the low e�ective mass of light-hole bands, the LH1+LH2 miniband is rather wide. The

LH4 miniband exhibits strong anticrossing with LH5 miniband (not shown in Fig. 2(a)). Crossings

at kt = 0 are converted to anticrossings, and zero energy gaps disappear at �nite kt, as displayed in

Fig. 3 for the superlattice wave vector q = 0. There exist prominent anticrossings between the �rst

(HH1), the second (LH1), and the third (HH2) miniband. All these results are in good agreement

with those obtained from EPM calculation [4]. As an example, the HH ground state energy in GaAs
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FIG. 3. In-plane miniband dispersion for q = 0 in (a) Ge twinning superlattice and (b) GaAs twinning

superlattice. All the bands disperse in a nearly isotropic fashion, and there is a clear anticrossing

between HH1 and LH1 level, and the second between LH1 and HH2 level.

is fairly well estimated by EFT, while excellent agreement between EPM and EFT was found in Ge.

The discrepancy between EFT and EPM becomes negligible if the Luttinger parameters are extracted

from the EPM itself, which does not seem surprising, since the �t to the dispersion relation of the

EFT works best for the lowest energy states [27]. Nonetheless, we consider the deviations of the zone

center energies of the order of a few meV acceptable, keeping in mind that the EPM in its di�erent

implementations (interface matching or supercell) does not really o�er accuracy much better than

that. Furthermore, zero energy gaps at kt = 0, as well as miniband folding e�ect found by EPM are

also yielded by EFT calculation, as clearly depicted in Fig. 3. The folding scheme is not reproduced

accurately by EFT, since the hole dispersion itself is not accurately reproduced, either. In other words,

eigenstates with a large superlattice wave vector are a�ected by the structure in a more complex way

than EFT can predict.

The absorption is calculated for two polarizations of the incoming light. The ambient temperature
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FIG. 4. The absorption spectra in (a) Ge TSL and (b) GaAs TSL for x polarized light (solid line) and

for z polarized light (dashed line). The values of Luttinger parameters, bring about higher absorption

for z than for x polarized light, yet the latter is of larger technological importance.

is taken to be equal to 77 K. Homogeneous doping of NA = 1017 cm�3 acceptors throughout the

structure (same as in Ref. [4]) is assumed. For the homogeneous relaxation time � =0.1 ps is adopted,

corresponding to the Lorentzian width of � = 13:16 meV. The �rst peak of the absorption coe�cient

for x polarized light in Ge arises mainly from the transitions between LH1 and HH2 miniband, and

occurs at 28 meV (Fig. 4(a)). The second absorption peak is shifted to much shorter wavelengths

(289 meV) in the midwavelength infrared (MWIR) window, o�ering 2.5 times higher absorption than

the �rst peak does. Both these transitions are enabled by the unconventional coupling mechanism

between normal and folded states, as discussed above. In addition, a �nite coupling arises from the

e�ective change of the Luttinger parameters at two interfaces belonging to a superlattice period. For

z polarized light the transitions between heavy-hole states take place. The single peak is located at

almost the short wavelength cut-o� of the MWIR window. Here again the absorption arises from the

dipole interaction, but the transitions are enabled between heavy-hole states, since the coupling terms
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are arranged at the main diagonal of the interaction Hamiltonian. Inter-heavy-hole matrix elements

are proportional to �z = 
1 � 2
3, which does not vary in the structure at all, that is, there are

no interface terms in the transition matrix element. This combination of the Luttinger parameters

amounts to 1.05 in GaAs. The momentum matrix element between heavy and light holes is now

proportional to �x = 2
p
2=3(
2�
3), which amounts to 1.14 in GaAs. This may lead one to conclude

that the absorption coe�cient attains about the same value for both x polarized and z polarized light.

However, this is not so because of �nite contribution of the interface terms in the case of x polarization,

as mentioned above. The resulting e�ect is about 2.5 times lower absorption of x-polarized light than

of z-polarized light (Fig. 4(b)). Combinations of Luttinger parameters enabling the absorption peak

for two polarizations are larger in Ge than in GaAs. For example, �z = 1:97 and �x = 2:35 in Ge,

which implies four times stronger absorption in Ge than in GaAs. The ratio is even larger for x

polarized light, due to lower interface terms in the transition matrix element.

In conclusion, the envelope-function model of the valence band electronic structure of twinning-

boundary-derived semiconductor structures is devised, with crystal rotation appropriately taken into

account and heuristically introduced state-dependent �-potentials at the interface. Its appliciability

and accuracy is tested on Ge-based TSL, the electronic structure and optical properties of which are

calculated. The model exhibits a great deal of congruence with the pseudopotential theory. The zone-

center energies as well as the dispersion curves of the lowest minibands are reproduced accurately

by the method. The zero energy gaps are identi�ed, and crossings and anticrossings are noticed

and explained. Peculiar electronic structure o�ers coupling between otherwise forbidden states in

composite superlattices. This coupling arises from the change of the o�-diagonal terms of the velocity

operator across the interface. It is shown that the dipole matrix elements are responsible for the

absorption. The magnitude of the absorption coe�cient agrees with the results of the pseudopotential

theory [4], suggesting that this structure might be useful for the state-of-art quantum well infrared

photodetectors. Finally, in view of considerable simplicity of this model, in contrast to microscopic

approaches, it may prove useful in studying other phenomena, not only in superlattices but also in

single twinning boundaries (commonly occuring defects in semiconductors, important for transport or

recombination), which are the large-period limit of TLS's.

A Appendix

The boundary condition for the probability current density is obtained by integrating the system of

di�erential equations represented by the Hamiltonian, Eq. (2), across the interface. In considerations

presented in this paper there appear two matrices of the same structure as the matrix in Eq. (2) (with

�!0), i.e.

Deff = D�1
2B(D1A �D1B) (28)

and

D� = D�1
2BV�; (29)

where D1A, D1B, and D2B are given in Table 1.

layer Ph Qh A+ A� B C

D1A 0 0 0 0 � ip
3
(2
2 + 
3)(kx � iky) i

q
2
3
(
2 � 
3)(kx + iky)

D1B 0 0 0 0 ip
3
(2
2 + 
3)(kx � iky) �i

q
2

3
(
2 � 
3)(kx + iky)

D2B 
1 �2
3 
1 � 2
3 
1 + 2
3 0 0

TABLE 1. Matrices for the probability current density derived boundary condition. These matrices

are composed analogously to the hole Hamiltonian, hence the same labels are used here as in Eq. (2).
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