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A procedure for the design of quantum well structures optimized with respect to

the intersubband resonant second order nonlinear e�ects is proposed. It relies on the

inverse spectral theory, allowing one to start from an arbitrary potential and shift its

levels to the positions required for a particular application, in this case such that they

become equispaced. Free parameters that appear, and determine the shape of the

modi�ed potential, are then varied in order to �nd the optimal potential shape, that

maximizes the nonlinearity, while levels energies are automatically �xed throughout this

variation. Furthermore, the procedure is adapted to handle cases of variable e�ective

mass, unlike the conventional inverse spectral theory. The use of this procedure is

demonstrated by designing a graded AlGaAs ternary alloy quantum well optimized for

the second order nonlinearity at 10.6 �m. Starting with a truncated parabolic potential,

the �nal optimized quantum well potential is obtained, with nonlinearity exceeding

values previously obtained in the literature.

I Introduction

Intersubband transitions in semiconductor quantum wells (QW) have attracted considerable re-
search attention. This is mainly due to large values of dipole transition matrix elements [1] and the
possibility of achieving the resonance conditions. Thus, both the linear and, even more so, nonlinear
optical processes in these structures are very intense. Large dipole matrix elements are associated
with a small e�ective mass m� of electrons, scaling approximately as m� �1=2 (Ref. [2]). Within a
given material (i.e., m�), however, a lot can be done to enhance those matrix elements relevant to
a particular type of nonlinearity, by proper shaping of the QW (i.e., its potential), and hence the
quantized states' wave functions. While varying the QW shape it is (almost always) essential to keep
the level spacing as speci�ed, e.g. equispaced for double resonant second harmonic generation (SHG).
Clearly, only asymmetric structures are useful for SHG, and may be realized by either an asymmetric
composition grading in a stepwise constant or continuous manner, e.g. Refs. [2] and [3], or electric
�eld biasing, e.g. Refs. [4, 5], or both.
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Some considerations of optimizing the QW shape, within the class of simple step-graded QW's,
and within a somewhat idealized model, were presented in Ref. [2]. If the search for the best potential
shape requires any amount of trial-and-error type calculations, most e�ort is spent in restoring the
level spacing upon changing the potential shape, rather than in checking the values of matrix elements.
Within the class of continuously graded QW's this problem may be very serious. For these we have
recently used a method based on supersymmetric quantum mechanics [6, 7, 8]. It starts with a (rather
arbitrary) initial potential, such that its quantized states are positioned as required, e.g. are equispaced
if the QW is intended for resonance SHG, and then generates a family of potentials isospectral to the
initial one, their shape being controlled by one or more scalar parameters. By varying these parameters
one may easily search for the potential shape which maximizes those matrix elements relevant for e.g.
resonance SHG. Here we describe another method for �nding the best potential shape of QW's, which
is even more versatile than the one based on supersymmetry. It starts with a completely arbitrary
initial potential, and, using the inverse spectral theory (IST), e.g. Ref. [9], shifts the states to their
desired positions, while, at the same time, it introduces free parameter(s) for varying the shape of this
modi�ed potential in an isospectral manner. The use of the method is exempli�ed by �nding the QW
shape for optimal second order susceptibilitys, relevant for SHG and optical recti�cation (OR).

II The IST tailoring of the potential

The electron motion in a potential well U(z), with a constant e�ective mass m� is described by
the envelope function Schr�odinger equation

�
~
2

2m�

d2 i(z)

dz2
+ U(z) i(z) = Ei i(z): (1)

The discrete eigenenergies of the system, and the corresponding eigenfunctions, are denoted as Ei and
 i(z) (i = 1; 2; : : :), respectively. The IST enables one to construct a modi�ed potential UIST (z),
which has the property that one (say, the k'th) of its eigenvalues is shifted by a prescribed amount
� from the k-th eigenvalue (Ek) of the initial potential U(z), while all other eigenvalues of U(z) and
UIST (z) coincide. It has the form

UIST (z;Ek + �) = U(z)�
~2

m�

d2

dz2
ln[Wkf �;  kg] (2)

where Wk(z) is the Wronskian

Wkf �;  kg =  �(z)
d k(z)

dz
�  k(z)

d �(z)

dz
(3)

with  k being the k-th eigenfunction of the initial potential, and  � any solution of the Schr�odinger
equation with U(z) corresponding to energy Ek + �. The shift � may take any value in the interval
(Ek�1 �Ek; Ek+1 � Ek), i.e., the shifted level cannot cross any other level [10].

The function  �, which is clearly not a normalizable eigenfunction, may be written as a linear
combination of the two particular solutions, i.e.,  � = C1'1(z) + C2'2(z), satisfying the fundamental
initial conditions '1(0) = '02(0) = 1, and '2(0) = '01(0) = 0.

Consider a system having non-equispaced states, hence not appropriate for resonant SHG. Its
energy spectrum may be "corrected" to provide equal (and just right) spacing between, say, the ground

(1) and some other two states (2 and 3) by making shifts (one at a time): E2 ! E
shift

2 = E1 + �E,

and E3 ! E
shift

3 = E1+2�E, where �E = ~! is the photon energy of the input laser radiation. The

values of shifts of the initial potential states in the above equations are thus �2 = E
shift

2 � E2 and

�3 = E
shift

3 �E3.
If the initial potential is symmetric, and lacks the second order nonlinearity, one also has to build

in the asymmetrization in this procedure. For this purpose, the transform described above is done in
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FIG. 1. The procedure of levels shifting and the potential asymmetrization, taking levels 2 and 3 to

shift in respect to the �xed level 1.

two steps. First, the wave function  � corresponding to energy E3 + �3 = E1 + 2�E is chosen, via
the constants C1 = 0 and C2 = 1, to have the opposite parity from that of  3, i.e., to be odd, which
delivers a new potential

~U(z;E3+ �3) = U(z)�
~2

m�

d2

dz2
ln[W3f �3 ;  3g] (4)

which, however, is still symmetric, as displayed in Fig. 1, but has the third state correctly spaced
in respect to the ground state, Eshift

3 � E1 = 2�E. The normalized wave functions for i 6= 3,
corresponding to it, are given by

~ i(z) =

�
1�

�3

Ei �E3

��1=2 �
 i(z)�

2m��3

~2

 �3(z)

W3f �3 ;  3g
�

Z
z

�1

 i 3dz
0

�
(5)

while the wave function for i = 3

~ 3(z) =

 
�

~
2

2m��3
[F+

�3
� F�

�3
]

!�1=2
 3(z)

W3f �3;  3g
(6)

where F��3 = limz!�1 F�3(z) and F0�3(z) = 1= 2
�3
(z).

Next comes the asymmetrization. In calculating  �2 at energy E2 + �2 = E1 + �E, the constants
C1;2 are chosen so that, along with the particular solution having the opposite parity from  2, the
other one having the same parity as  2 (i.e., odd) is also introduced. Indeed, setting C1 = 1 and
C2 = � gives the �nal potential

UIST (z;�;E3+ �3; E2+ �2) = ~U(z)�
~2

m�

d2

dz2
ln[ ~W2f �2(�);

~ 2g] (7)

or, after substituting (4) into (7)

UIST (z;�) = U(z)�
~2

m�

d2

dz2
ln[W3f �3 ;  3g �

~W2f �2(�);
~ 2g]; (8)

which is asymmetric for all � 6= 0. The corresponding normalized wave functions for i 6= 2 read:

 IST

i (z;�) =

�
1�

�2

Ei �E2

��1=2 "
~ i(z)�

2m��2

~2

 �2(z;�)
~W2f �2(�);

~ 2g

Z
z

�1

~ i ~ 2 dz
0

#
(9)
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where now E3 � E
shift

3 , while the wave function for i = 2

 IST

2 (z;�) =

 
�

~
2

2m��2
[~F+

�2
� ~F�

�2
]

!�1=2 ~ 2(z)
~W2f �2(�);

~ 2g
(10)

where ~F��2 = limz!�1
~F�2(z) and

~F0�2(z) = 1= ~ 2
�2
(z). Eqs. (8)-(10) are the "design" equations for the

�nal asymmetric potential and the wave functions which enable a �nite value of the cyclic product of
matrix elements relevant for the second order nonlinearity. The free parameter � appearing in (8)-(10)
implies the existence of a family of isospectral potentials. By varying �, one also varies the potential
shape and hence the wave functions and the dipole matrix elements, with the �nal aim of �nding the
optimal � = �opt, i.e., the optimized potential UIST (z;�opt) which gives the largest product of relevant
matrix elements (and the resonant second order nonlinearity). Throughout this variation of � in (8),

the energies of its states, and hence the resonance conditions, remain preserved, i.e., E
shift

2 �E1 = �E

and Eshift

3 �E1 = 2�E.

III Supersymmetric quantum mechanics as special case

of the IST

Consider, within the IST, the case �! 0, when the transformed potential is isospectral to the orig-
inal, just as is the case in supersymmetric quantum mechanics (SUSYQM). Taking, for convenience,
that one of the fundamental solutions (say '1) has the property lim�!0 '1(z) =  k(z), the Wronskian
may be written as Wf'1;  kg+ �Wf'2;  kg, where the �rst term becomes

lim
�!0

Wf'1;  kg =
2m��

~2

Z
z

�1

 2
k
(z0)dz0 (11)

while the second term becomes a constant �C, where C = lim�!0Wf'2;  kg. If � is given a �nite
value, then Wf �;  kg = �C is constant, which corresponds to identity transform of the potential,
UIST (z) = U(z), for any �. However, taking � tends to zero so that �(�) C! 2m���=~2, where � is
an arbitrary constant, gives the Wronskian

Wf �;  kg !
2m��

~2

�
�+

Z
z

�1

 2
k(z

0)dz0
�
�

2m��

~2
WSS(z) (12)

and the potential UIST (z) isospectral to the original U(z) is

UIST (z) = U(z)�
~
2

m�

d2

dz2
ln WSS(z) = USS(z) (13)

where the subscript SS refers to the expressions derived in the SUSYQM [17].
Therefore, we conclude that the optimized potential obtained via IST will never be inferior to that

obtained via SUSYQM, provided one starts with the same class of initial potentials in both approaches
[11, 12](though the improvement in some examples may not be drastic).

IV Mapping the variable mass into a constant mass

Hamiltonian

In semiconductor quantum well structures based upon graded semiconductor alloys, it is not only
the potential, but also the electron e�ective mass, that are position dependent. The results of Sec. II,
relying on the constant-mass assumption, are thus likely not to be directly applicable to almost all
common QW's (the exception are some specially designed QW's based upon quaternary alloys, where
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the e�ective mass can be kept constant while the potential varies). In technologically more convenient,
ternary alloy based QW's, the e�ective mass is necessarily position dependent, as discussed below,
and some additional considerations are due, in order to be able to use the results of Sec. II for these
structures. The approach we use is to map the variable mass Hamiltonian onto one with constant
mass. Here we extend the considerations presented in Ref. [13], to include the cases of truncated and
asymmetric potentials.

Consider a QW based upon a ternary semiconductor alloy AxB1�xC, with the mole fraction varying
along the z axis, i.e., x = x(z). We take the conduction band edge in the BC compound to be lower
by �V than that in the AC compound, while the electron e�ective masses in the two are mBC and
mAC , respectively. Then the potential experienced by electrons (the conduction band edge), and their
e�ective mass both vary along the z axis as V (z) = �V �x(z), and m(z) = mACx(z)+mBC [1�x(z)].
Thus, in ternary alloys the potential and the e�ective mass are related as V (z) = (�V=�m)[m(z)�
mBC] = � � [m(z)�mBC], where �m = mAC �mBC and � = �V=�m.

With the position dependent e�ective mass, the Schr�odinger equation for the envelope functions
has the Ben Daniel - Duke form [14], i.e., with the notation introduced above:

d

dz

�
1

m(z)

d (z)

dz

�
+ a [E � � (m(z)�mBC)] (z) = 0 (14)

where a = 2m0=~
2, and m0 is the free electron mass. Now we aim at �nding the function m(z), and,

uniquely related to it, V (z) and x(z), such that eigenstates of Eq. (14) are identical to those of the
constant-mass Eq. (8) with the potential UIST (z) speci�ed in advance. For this purpose we introduce
a new coordinate y, such that z = f(y), where the function f(: : :) will be speci�ed later. In terms of
this new coordinate, Eq. (11) takes the form

d2u(y)

dy2
+
n
A(y) + am(y)f 0

2
(y) [E � � (m(y)�mBC)]

o
u(y) = 0 (15)

with

A(y) = �
1

4

�
d ln[m(y) f 0(y)]

dy

�2
+
1

2

d2 ln[m(y) f 0(y)]

dy2
(16)

where u(y) = const �  (y)=
p
m(y) f 0(y), and  (y) =  [f(y)] =  (z), m(y) = m[f(y)] = m(z),

f 0(y) = df(y)=dy. Eqs. (14) and (15) clearly have identical spectra.
Now we require the constant mass (m� = mBC) Schr�odinger equation with the optimized potential

UIST (y; �opt), Eq. (8), to coincide with Eq. (15). This results in a system of two equations, from which
we �nd

m(y) =
1

4amBC�
��2(y) (17)

z = f(y) =

Z
y

0

s
mBC

m(y0)
dy0: (18)

where the function �(y) in Eq. (17) is found by solving the nonlinear di�erential equation

2�(y)
d2�(y)

dy2
�

�
d�(y)

dy

�2
� 4amBC [�mBC + V (y)] �2(y) + 1 = 0: (19)

Eq. (19) may be solved by �rst �nding the particular solutions �L;R(y) of the characteristic equation
[15] (here we specialize to the case of a truncated potential V (y) = V = const for jyj > �, and
V (y) = UIST (y; �opt) for jyj < �)

d2�(y)

dy2
� amBC [�mBC +

(
V

UIST (y;�opt)

)
] �(y) = 0;

jyj > �

jyj < �
(20)
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chosen so that their Wronskian squared equals unity. In analogy to scattering theory, the two linearly
independent solutions of Eq. (20) may be written as (�2 = amBC [�mBC + V ]):

�L;R(y) =

8><
>:

exp(�y) + RL exp(��y); TR exp(��y) y < ��
AL;Rs1(y) + BL;Rs2(y) �� < y < �

TL exp(�y); RR exp(�y) + exp(��y) y > �
(21)

where s1;2(y) are the particular solutions of (20), satisfying the fundamental initial conditions s1(0) =
s02(0) = 1, and s2(0) = s01(0) = 0, and may be found numerically, while the constants TL;R, RL;R, AL;R,
and BL;R are determined from the Wronskian properties and the boundary conditions at y = ��.
These constants depend slightly on the choice of �, but this dependence becomes diminishingly weak
as � increases. We also use the fact that TL = TR = T .

Since the Wronskian squared of �L and �R equals unity, in terms of the two particular solutions of
(20) the general solution of Eq. (19) may be written as [15]

�(y) = [Ce�
2
L
(y)�

p
1 + 4CeCo �L(y) �R(y) + Co�

2
R
(y)]=(2�T ) (22)

where Ce;o are constants to be determined. Now, having in mind the physically acceptable values of
the QW parameters, i.e., m(jyj ! 1) = V (�m=�V ) + mBC = mb and V (jyj > �) = V (inside
the barrier), and accounting for the asymptotic behaviour of exp(��y), we �nd that the condition
�(jyj � �)! const: 6= 0 is satis�ed by the choice of constants

Co = �
TRL

(RRRL � T 2)
; Ce = �

TRR

(RRRL � T 2)
: (23)

Finally, substitution into Eq. (17) gives the e�ective mass variation [16]:

m(y) =
mbh

1 +
RR;L

(RRRL�T
2)
exp(�2�y)

i2 ; jyj > � (24)

where subscript R(L) and +(�) in the exponential refer to y < �� (y > �), and

m(y) =
mbT

2(RRRL � T 2)2�
TRR�

2
L
(y)� (RRRL + T 2)�L(y)�R(y) + TRL�

2
R
(y)
�2 ; jyj < �: (25)

The real-space variation of the e�ective mass m(z) = m[f(y)] = m(y) may then be found from
(18) and (24)-(25) numerically, and then the potential V (z) and the grading function x(z) directly
follow, e.g.

V (z) = V [z(y)] = V (y) =
�V

�m
[m(y)�mBC ] (26)

The �nal Hamiltonian has the e�ective mass following the potential, as corresponds to ternary alloys
based QW's, and is fully isospectral to the Hamiltonian with the constant e�ective mass m� = mBC

and the optimized potential UIST (y; �opt), Eq. (8). Its normalized wave functions are given by

 
i
(y) = [m(y)=mBC]

1=4 IST

i (y) (27)

in parametric form, i.e., with z = f(y), Eq. (18). The wave functions  IST

i
(y), Eqs. (9) and (10), are

here assumed to be already normalized, i.e.,
R
j IST

i
(y)j2dy = 1.
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V Numerical results and discussion

V.1 Second harmonic generation

To illustrate the above considerations, we have performed optimization calculations to design a
QW structure for double resonance SHG of CO2 laser radiation (~! = �E = 116 meV). Taking
the lowest three levels to be relevant in this process, a well depth of at least 400 meV is necessary
to accomodate these levels, and the compounds AC and BC should be chosen accordingly. The
commonly used AlxGa1�xAs system meets this requirement, and has the additional advantages that it
is strain-free, and technologically well understood, so it was chosen for further work. The conduction
band �-valley discontinuity is �V =750 meV, and electron e�ective masses in the two compounds are
mGaAs = 0:066m0 and mAlAs = 0:15m0 [14].

In QW's with �-valley related levels, it is only the z component (perpendicular to the QW layer)
of the electric �eld that is active in intersubband transitions. Considering the process of SHG, the
second-order nonlinear susceptibility, that relates the �eld at pump frequency and the polarization at
harmonic frequency, is largest under double resonance conditions, i.e., E2 � E1 = E3 � E2 = ~!, and
then its only relevant component amounts to

�2!zzz =
e3(�11� �22)

Lz�0

�12�23�31

(~�2)2
: (28)

where �ij = hijzjji are the transition matrix elements (dipole moments), Lz denotes the QW structure
width, �ii is the electron density in state i per unit well surface, ~�2 is the linewidth (taken common
for all transitions). By varying the QW pro�le (potential shape) one varies the dipole moments,
while the linewidth is a�ected far less signi�cantly. Therefore, maximizing �2!zzz e�ectively amounts to
maximizing the cyclic product of matrix elements, �(2) = �12�23�31, in the numerator of (28).

To �nd the optimized asymmetric potential, with the largest �(2), we start from a family of
truncated parabolic potentials of the form

U(z) =

8<
:

m
�

2

�
�E(N)

~

�2
z2; jzj < �

V; jzj > �
(29)

where �E(N) = 84:75+N � 0:25 [meV], and N is an integer incremented from 1 to 241. The e�ective
mass in (29) is taken constant and equal to that in GaAs, and the potential is truncated at V = 400
meV (hence the well width � changes with incrementing N). Because of truncation this is not exactly
a linear harmonic oscillator, and in no case will the levels be strictly equispaced. Furthermore, their
energies will change as N (i.e., the well width) varies, so none of the potentials (29) meets the double
resonance condition. Applying an isospectral transform like supersymmetry [17] will make them
asymmetric, and all �ij would then be nonzero, but will not correct the level's energies. Deviation
of these energies from their desired positions, that would provide double resonance at ~! = 116 meV
(i.e., in the spirit of Sec. II, the necessary shifts �2 = E

shift

2 �E2 and �3 = E
shift

3 � E3), are given in
Fig. 2 as they depend on the frequency �E=~.

The initial potentials are then processed along the lines presented in Sec. II: The third level of
U(z) is shifted to be spaced by 232 meV from the �rst, i.e., Eshift

3 = E3 + �3 = E1 + 232 meV,
and, by choosing the constants, the parity of its wave function is set opposite from that of  3(z).

Next, the second level is shifted according to Eshift

2 = E2 + �2 = E1 + 116 meV. This procedure
was repeated for all potentials in the family (29), and in each case the asymmetrization parameter
� was varied while monitoring the value of the matrix elements product �(2) (calculated by using
Eqs. (9) and (10)). With the initial potentials chosen symmetric, it is enough to give only positive
values to the parameter �, because here �(2)(��) = ��(2)(�), otherwise both positive and negative
values should be explored. We should also note here that, in doing these calculations, one has to mind
that the Wronskians in Eqs. (4-10) do not cross zero, in order to avoid singularities and physically
unacceptable solutions. The results of this search are displayed in Fig. 3. The largest value of �(2) is
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FIG. 2. The shifts �2 = E
shift

2 �E2 and �3 = E
shift

3 �E3, of levels 2 and 3, necessary to obtain equal

spacings (double resonance), as they depend on the parabolic potential slope �E.

found with the values of parameters N = 68 (i.e., �E(68) = 101:75 meV), and �opt = 0:18. Here we
have �(2) = 4375:2 �A3, with individual dipole moments �12 = 16:96 �A, �23 = 28:12 �A, and �31 = 9:17
�A. The corresponding optimized potential UIST (z;�opt) is given in Fig. 4. It may be interesting to
note that the original potential, from which this optimized potential was derived, had its levels at
E1 = 50:87 meV, E2 = 152:54 meV, and E3 = 253:45 meV, therefore (with �E21 = 101:67 meV
and �E32 = 100:91 meV) it was not matched for resonant SHG of ~! = 116 meV radiation, and its
asymmetryzation via the isospectral supersymmetric transform alone would not help. However, the
IST based levels shifts, accompanied by asymmetryzation, did the job.
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FIG. 3. Values of the matrix elements product �(2) = �12�23�31 obtainable with various values of the

QW design parameters �E(N) and �.

The potential optimized so far, assuming a constant e�ective mass, is not directly realizable in
graded ternary alloys, because the e�ective mass there cannot be kept constant. To make it realizable,
we have to map the Hamiltonian with UIST (z;�opt) and m

� = const into the Hamiltonian with the
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e�ective mass following the potential, as corresponds to the chosen ternary alloy system. This is
performed along the lines described in Sec. IV, in particular Eqs. (24-26) and (18). Having obtained
the optimized Hamiltonian realizable in graded AlxGa1�xAs, it remains to check the product of matrix
elements in this new (but realistic) system. Using Eq. (27) we �nd that the matrix elements �ij =
h 

i
(y)jz(y)j 

j
(y)i now amount to �12 = 16:31 �A, �23 = 25:86 �A, and �31 = 9:27 �A, so �(2) = 3910 �A3,

Ref. [16], has somewhat decreased from what was predicted above. This should have been expected,
since the e�ective mass throughout the structure generally exceeds the constant value m� = 0:066
initially taken, and � � m�1=2, Ref. [2]. The realistic optimized potential, given in Fig. 4, has a
negative undershoot, and hence has a somewhat larger span of values than the original U(z). However,
the negative undershoot itself makes no di�culties in realization, because the reference zero of the
potential is irrelevant for physics, the whole picture may be shifted up or down at will. In realizing
this potential by grading the AlxGa1�xAs alloy, via the relation x(z) ��V = V (z) + const, one may
set const = jmin(V (z))j, so that x = 0 at the lowest point of the well, and the full potential span
o�ered by AlxGa1�xAs is taken advantage of.

Comparison of the maximal value of �(2) found here against the best values obtained elsewhere
in step-graded QW's (e.g. �(2) = 2394 �A3, Ref. [2], or �(2) = 2635 �A3, Ref. [18]) shows that �(2)

obtained in this work (though in a continuously graded QW) is better by �30%. We should also
note that, in case of deeper wells, one would have to account for the bulk nonparabolicity. It cannot
be directly included in the theory described above because an energy dependent potential would
result, and this e�ect should better be accounted by slight numerical "repolishing" of the optimized
potential obtained without it. Our previous experience with SUSYQM based QW optimization in
respect to second harmonic generation [7] indicates that these have a rather mild inuence on the best
potential shape (slightly squeezing the output of idealized calculations in order to compensate for the
nonparabolicity-increased e�ective mass).
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FIG. 4. The optimized potential UIST (z), corresponding to �E = 101:75 meV and �opt = 0:18, with
constant e�ective mass, and the optimized realizable potential V (z) with the variable e�ective mass

following it, as corresponds to graded AlGaAs alloy.

It should be noted that the particular schedule of steps used above is just one among a few
other possibilities. To achieve the required positions of the three levels, one may choose to �x the
second or the third, and shift the other two, which would produce a potential di�erent from the one
obtained here. Furthermore, additional freedom may be gained by introducing more free constants
when constructing the  � functions from the fundamental solutions. This should be done with great
care, however, because e.g. introducing a parameter � in  �3 (analogous to � in  �2) would result in a
highly oscillatory term (d2=dz2) ln[Wf 3;  �3g], which would eventually yield a highly oscillatory, and
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di�cult to realize, �nal potential.

V.2 Optical recti�cation

The density matrix calculations [2, 19] for a two-level system shows that optical recti�cation

coe�cient �
(2)
0 becomes largest at resonance (when the spacing between the two relevant levels of the

system equals the photon energy, i.e., ~! = E2 � E1 = ~!21), and then amounts to

�
(2)
0max

= 2
e3T1T2

�0~2
(�11 � �22)�

2
12�12 (30)

Here �ii; i = 1; 2 denote electron densities on i-th quantized state per unit well surface, �12 = h1jzj2i
and �12 = h1jzj1i � h2jzj2i are the transition dipole moment and the di�erence of permanent dipole
moments of the two states. Furthermore, T1 and T2 are the diagonal and o�-diagonal relaxation times
in the density matrix equation (the excited state lifetime and the dephasing time, respectively).

Concerning the possibilities of increasing �
(2)
0 , the dephasing time T2, arising from various scat-

tering mechanisms, depends only slightly on the QW shape [20]. The same is true for the lifetime
T1. In fact, the e�ective T1 may be increased by introducing additional, optically inactive, metastable

states into the system, but �
(2)
0 is then increased at the expense of making the response slower [21].

The dipole moments �12 and �12, on the other hand, very much depend on the QW shape, which

may thus be employed for maximizing �
(2)
0 . While varying the QW shape, it is essential to keep the

levels spacing as speci�ed, to match the resonance condition. Clearly, only asymmetric structures are
useful for optical recti�cation, and may be realized by asymmetric composition grading in a stepwise
constant or continuous manner.

In order to optimize the QW shape in respect to �
(2)
0 , therefore, one �rst sets some initial potential

U(z), the states of which are likely not to be properly spaced. Then, a family of modi�ed poten-

tials (2) is generated, with the spacing between the two states relevant for �
(2)
0 corrected by making

an appropriate shift �. By varying �, one evaluates the matrix elements �12 = h IST

1 (z)jzj IST

2 (z)i
and �12 = h IST

1 (z)jzj IST

1 (z)i � h IST

2 (z)jzj IST

2 (z)i, and �nds the optimal value of the parameter

� = �opt which maximizes the product of matrix elements �(0) = �212�12 appearing in �
(2)
0 . The corre-

sponding potential UIST (z;�opt) is the best potential shape that may be derived from the particular

original potential U(z) chosen (on which the optimized �
(2)
0max

will clearly depend). The search may
be widened by starting with a number, or a family, of initial potentials.

To give a speci�c example, consider the optimized design of a QW structure for resonant optical
recti�cation of CO2 laser radiation (~! = �E = 116 meV). We start with a family of truncated
parabolic potentials Eq. (29) where �E(N) = 100 +N � 0:5 [meV], and N is an integer incremented
from 0 to 145. The e�ective mass in (2) is taken constant and equal to that in GaAs, and the potential
is truncated at V = 190 meV or V = 200 meV in two sets of calculations (note that the well width
� changes with incrementing N). Levels energies will change as N (i.e., the well width) varies, so
the potentials (2) generally do not meet the resonance condition, and shifting of one of the levels
is �rst necessary, which we perform for the second level (k = 2 in the above expressions) to obtain
EIST

2 � EIST

1 = ~!, with EIST

2 = E2 + � and EIST

1 = E1. For each speci�c initial potential (i.e., the
value of N in (2) we vary the parameter � and evaluate the dipole matrix elements, from the wave
functions, in order to �nd the largest �(0) = �212�12 corresponding to this N , and repeat this procedure
for all N . It is worth noting that, due to the symmetry of the initial potentials, it is enough to scan
only over positive values of � (because �(0)(��) = ��(0)(�)), otherwise both positive and negative
values should be explored. Furthermore, one has to mind that the Wronskians in Eq. (2) do not cross
zero, in order to avoid singularities and physically unacceptable solutions.

Results of the search done for the truncation V = 200 meV are given in Fig. 5(a). We �nd that
the largest value of �(0) occurs for the values of parameters N = 101 (i.e., �E(101) = 150:5 meV),

and �opt = 0:48. Here we have �
(0)
max = 15677:5 �A3, with individual dipole moments �12 = 15:75 �A,
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FIG. 5. (a) Values of the matrix elements product �(0) = �212�12 obtainable with various values of the

QW design parameters N and �, with the initial parabolic potential truncated at V = 200 meV, and

V = 190 meV (b); (c) the optimized potentials UIST (z) for N = 101 and �opt = 0:48 coresponding to

V = 200 meV (dashed line) and N = 97 and �opt = 0:70 coresponding to V = 190 meV (solid line).

and �12 = 63:20 �A. The initial potential had its levels at E1 = 73:01 meV and E2 = 192:65 meV,
so a shift of � = �3:64 meV of the second state was performed to bring the spacing �E21 = 119:64
meV to the desired 116 meV. In another search (Fig. 5(b)), with the truncation V = 190 meV, we

�nd �
(0)
max = 18770:6 �A3, Ref. [12], with �12 = 13:51 �A, and �12 = 102:84 �A, which is obtained for

�E(97) = 148:5 meV and �opt = 0:70. The corresponding initial potential in this case had E1 = 71:75
meV and E2 = 185:71 meV, and required a shift � = 2:04 meV of the second level to correct the
spacing. The optimized potentials UIST (z;�opt) are given on Fig. 5(c).

While the optimized potentials may be realized by grading the AlGaAs alloy, in real structures it
may be necessary to include corrections due to the position (i.e., the alloy composition) dependent
mass and the nonparabolicity. However, with rather low energies of states in the above examples,

these corrections are here expected to be very small indeed. Comparison of �
(0)
max found here against

the values obtained elsewhere [2, 22] in step-graded QW's (also based on AlGaAs, within the constant

mass approximation, to make a fair comparison), shows that our �
(0)
max is better by up to 40%, and also
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�12�23�31 [�A
3] �212(�11 � �22) [�A

3]

e�. mass model const. pd. np. const. pd. np.

Ref. [4] 390.7 1887.6
Ref. [5] 3256.2
Ref. [2] 2394 12267
Ref. [18] 2634.7 8557.2
Ref. [24] 1223.4
Ref. [22] 12424
Ref. [25] 3003
SUSYQM 4279.7 3836.2 3297.6 15322 10660.2
IST 4375.2 3910 18771

TABLE 1. The publicated values of dipol matrix element products relevant for SHG and OR. Also in

table are lsted values obtained by supersymmetric quantum mechanics and inverse spectral theory. All

results are related to GaAs/AlGaAs QW's with diferent e�ective mass models: const. -m� = 0:066m0,

pd. - position dependant e�ective mass, and np. - with nonparabolicity of subbands included.

somewhat better that the value we have previously obtained using the SUSYQM based optimization
(�(0) = 15322 �A3) [8]. In this latter we have started with the potential (2) truncated at V = 200 meV,
its parameters already �tted to provide the correct levels spacing, and then varied it isospectrally in
order to �nd the best potential shape (however, the potential truncated at V = 190 meV could not
be handled by this approach). The similarity between the SUSYQM and IST results in the V = 200
meV case might have been physically expected from the rather small value of the shift � which was
here necessary to correct the levels spacing. Indeed, the SUSUQM is in fact contained in IST, as we
show above.

Finaly, the dipol matrix element products relevant for the second harmonic generation and optical
recti�cation published until now, are summarized in Table 1.

VI Conclusion

A procedure for the design of quantum well structures optimized in respect to the intersubband
double resonant second harmonic generation and resonant optical recti�cation was proposed and dis-
cussed. Starting with an arbitrary potential, with levels energies not properly positioned for this
application, this procedure allows one to shift the relevant levels to the desired positions, by using the
inverse spectral theory, and vary the potential shape, controlled by free parameters, in order to �nd
the shape that maximizes the matrix elements relevant for second order nonlinearity. Furthermore,
the procedure is devised to handle the case of position dependent e�ective mass, and is thus applicable
to realistic QW structures. Its applicability was demonstrated by designing a graded AlGaAs ternary
alloy quantum well optimized in the second order nonlinearity at 10.6 �m. Starting with a truncated
parabolic potential, the �nal optimized QW potential was obtained, with the second order susceptibil-
ity signi�cantly (�30%) exceeding values previously obtained in the literature, and is slightly better
than obtained in Refs. [7, 8].

References

[1] L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).

[2] E. Rosencher and Ph. Bois, Phys. Rev. B 44, 11315 (1991).

[3] M. K. Gurnick and T. A. DeTemple, IEEE J. Quantum Electron. 19, 791 (1983).



82 Stanko Tomi�c

[4] M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, Phys. Rev. Lett. 62, 1041
(1989).

[5] Z. Ikoni�c, V. Milanovi�c, and D. Tjapkin, IEEE J. Quantum Electron. 24, 54 (1989).

[6] V. Milanovi�c and Z. Ikoni�c, IEEE J. Quantum Electron. 32, 1316 (1996).

[7] S. Tomi�c, V. Milanovi�c, and Z. Ikoni�c, Phys. Rev. B 56, 1033 (1997).

[8] S. Tomi�c, V. Milanovi�c, and Z. Ikoni�c, Opt. Commun. 143, 214 (1997).

[9] V. M. Chabanov, B. N. Zakhariev, S. Brandt, H. D. Dahmen, and T. Stroch, Phys. Rev. A 52,
3389 (1995).

[10] J. P�oschel and E. Trubowitz, Inverse Spectral Theory (Academic, New York, 1987)

[11] V. Milanovi�c and Z. Ikoni�c, Solid State Commun. 104, 445 (1997).

[12] S. Tomi�c, V. Milanovi�c, and Z. Ikoni�c, Phys. Lett. A 238, 385 (1998).

[13] V. Milanovi�c and Z. Ikoni�c, Phys. Rev. B 54, 1998 (1996).

[14] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de
Physique, CNRS, Paris, 1988).

[15] G. Julia, Exercices d'Analyse, Tome III (Libraire du Bureau des Longitudes de l'Êcole Polytech-
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